forked from vladmandic/automatic
-
Notifications
You must be signed in to change notification settings - Fork 0
/
train-lora.py
executable file
·274 lines (249 loc) · 11.7 KB
/
train-lora.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
#!/bin/env python
"""
Extract approximating LoRA by SVD from two SD models
Based on: <https://github.com/kohya-ss/sd-scripts/blob/main/networks/train_network.py>
Train LoRA with custom preprocessing, tagging and bucketing
Disabled/broken:
- `accelerate` with *dynamo* enabled
- `xformers` due to *faketensors* requirement
- `mem_eff_attn` due to *forwardfunc* mismatch
- 'use_8bit_adam` due to *bitsandbyttes* CUDA errors
"""
import os
import re
import gc
import sys
import json
import time
import shutil
import argparse
import tempfile
import torch
import logging
import importlib
import transformers
from pathlib import Path
from modules.util import log, Map, get_memory
import modules.process
import modules.sdapi
latents = importlib.import_module('modules.lora-latents')
lora_path = os.path.abspath(os.path.join(os.path.dirname(__file__), os.pardir, 'modules', 'lora'))
sys.path.append(lora_path)
lycoris_path = os.path.abspath(os.path.join(os.path.dirname(__file__), os.pardir, 'modules', 'lycoris'))
sys.path.append(lycoris_path)
from train_network import train
options = Map({
"bucket_no_upscale": False,
"bucket_reso_steps": 64,
"cache_latents": True,
"caption_dropout_every_n_epochs": None,
"caption_dropout_rate": 0.0,
"caption_extension": ".txt",
"caption_extention": ".txt",
"caption_tag_dropout_rate": 0.0,
"clip_skip": None,
"color_aug": False,
"dataset_repeats": 1,
"debug_dataset": False,
"enable_bucket": False,
"face_crop_aug_range": None,
"flip_aug": False,
"full_fp16": False,
"gradient_accumulation_steps": 1,
"gradient_checkpointing": False,
"in_json": "",
"keep_tokens": None,
"learning_rate": 5e-05,
"log_prefix": None,
"logging_dir": None,
"lr_scheduler_num_cycles": 1,
"lr_scheduler_power": 1,
"lr_scheduler": "cosine",
"lr_warmup_steps": 0,
"max_bucket_reso": 1024,
"max_data_loader_n_workers": 8,
"max_grad_norm": 0.0,
"max_token_length": None,
"max_train_epochs": None,
"max_train_steps": 5000,
"mem_eff_attn": False,
"min_bucket_reso": 256,
"mixed_precision": "fp16",
"network_alpha": 1.0,
"network_args": None,
"network_dim": 16,
"network_module": "networks.lora",
"network_train_text_encoder_only": False,
"network_train_unet_only": False,
"network_weights": None,
"no_metadata": False,
"output_dir": "",
"output_name": "",
"persistent_data_loader_workers": False,
"pretrained_model_name_or_path": "",
"prior_loss_weight": 1.0,
"random_crop": False,
"reg_data_dir": None,
"resolution": "512,512",
"resume": None,
"save_every_n_epochs": None,
"save_last_n_epochs_state": None,
"save_last_n_epochs": None,
"save_model_as": "ckpt",
"save_n_epoch_ratio": None,
"save_precision": "fp16",
"save_state": False,
"seed": 42,
"shuffle_caption": False,
"text_encoder_lr": 5e-05,
"train_batch_size": 1,
"train_data_dir": "",
"training_comment": "mood-magic",
"unet_lr": 0.001,
"use_8bit_adam": False,
"v_parameterization": False,
"v2": False,
"vae": None,
"xformers": False,
})
def mem_stats():
gc.collect()
if torch.cuda.is_available():
with torch.no_grad():
torch.cuda.empty_cache()
with torch.cuda.device('cuda'):
torch.cuda.empty_cache()
torch.cuda.ipc_collect()
mem = get_memory()
log.info({ 'memory': { 'ram': mem.ram, 'gpu': mem.gpu } })
if __name__ == '__main__':
parser = argparse.ArgumentParser(description = 'train lora')
parser.add_argument('--model', type=str, default=None, required=False, help='original model to use a base for training, default: active model')
parser.add_argument('--input', '--dataset', type=str, default=None, required=True, help='input folder with training images')
parser.add_argument('--output', '--lora', type=str, default=None, required=True, help='lora name')
parser.add_argument('--tag', type=str, default=None, required=False, help='primary tag')
parser.add_argument('--dir', type=str, default=None, required=False, help='folder containing lora checkpoints')
parser.add_argument('--interim', type=int, default=0, help = 'save interim checkpoints after n epoch')
parser.add_argument('--process', type=str, default='original', required=False, help='list of processing steps: original,face,body,blur,range,upscale,restore')
parser.add_argument('--noprocess', default = False, action='store_true', help = 'skip processing and use existing input data')
parser.add_argument('--notrain', default = False, action='store_true', help = 'just run processing and skip training')
parser.add_argument('--nocaptions', default = False, action='store_true', help = 'skip creating captions and tags')
parser.add_argument('--nolatents', default = False, action='store_true', help = 'skip generating vae latents')
parser.add_argument('--offline', default = False, action='store_true', help = 'do not use webui server for processing')
parser.add_argument('--shutdown', default = False, action='store_true', help = 'shutdown webui server')
parser.add_argument('--gradient', type=int, default=1, required=False, help='gradient accumulation steps, default: %(default)s')
parser.add_argument('--steps', type=int, default=4000, required=False, help='training steps, default: %(default)s')
parser.add_argument('--dim', type=int, default=40, required=False, help='network dimension, default: %(default)s')
parser.add_argument('--repeats', type=int, default=10, required=False, help='number of repeats per image, default: %(default)s')
parser.add_argument('--alpha', type=float, default=0, required=False, help='alpha for weights scaling, default: half of dim')
parser.add_argument('--batch', type=int, default=1, required=False, help='batch size, default: %(default)s')
parser.add_argument('--lr', type=float, default=1e-04, required=False, help='model learning rate, default: %(default)s')
parser.add_argument('--unetlr', type=float, default=1e-04, required=False, help='unet learning rate, default: %(default)s')
parser.add_argument('--textlr', type=float, default=5e-05, required=False, help='text encoder learning rate, default: %(default)s')
parser.add_argument('--dreambooth', default=False, action='store_true', help = "use dreambooth style training")
parser.add_argument('--lycoris', default=False, action='store_true', help = "use lycoris style training")
parser.add_argument('--debug', default=False, action='store_true', help = "enable debug logging")
args = parser.parse_args()
defaults = Map({ 'options': {}, 'flags': {} }) if args.offline else Map(modules.sdapi.options())
if args.debug:
log.setLevel(logging.DEBUG)
log.debug({ 'debug': True })
if args.model is None:
args.model = defaults.options.get('sd_model_checkpoint', None)
args.model = args.model.split(' [')[0] if args.model is not None else None
if args.dir is None:
args.dir = defaults.flags.get('lora_dir', None)
if not os.path.isabs(args.model) and args.dir is not None and not os.path.exists(args.model):
args.model = os.path.abspath(os.path.join(args.dir, os.pardir, 'Stable-diffusion', args.model))
if args.dir is None:
args.dir = os.path.join(args.input, 'lora')
if not os.path.exists(args.model) or not os.path.isfile(args.model):
log.error({ 'lora cannot find model': args.model })
exit(1)
if not os.path.exists(args.input) or not os.path.isdir(args.input):
log.error({ 'lora cannot find training dir': args.input })
exit(1)
if not os.path.exists(args.dir) or not os.path.isdir(args.dir):
log.error({ 'lora cannot find training dir': args.dir })
exit(1)
options.pretrained_model_name_or_path = args.model
options.output_dir = args.dir
options.output_name = args.output
options.max_train_steps = args.steps
options.network_dim = args.dim
options.network_alpha = args.dim // 2 if args.alpha == 0 else args.alpha
options.gradient_accumulation_steps = args.gradient
options.save_every_n_epochs = args.interim if args.interim > 0 else None
options.learning_rate = args.lr
options.unet_lr = args.unetlr
options.text_encoder_lr = args.textlr
options.train_batch_size = args.batch
log.info({ 'train lora args': vars(options) })
transformers.logging.set_verbosity_error()
mem_stats()
json_file = os.path.join(tempfile.gettempdir(), args.output, args.output + '.json')
base = os.path.join(tempfile.gettempdir(), args.output)
options.train_data_dir = base
res = None
if args.dreambooth:
log.info({ 'using dreambooth style training': True })
options.in_json = None
else:
options.in_json = json_file
for root, _sub_dirs, folder in os.walk(args.input):
files = [os.path.join(root, f) for f in folder]
if not args.noprocess:
# preprocess
processing_options = args.process.split(',')
processing_options = [opt.strip() for opt in re.split(',| ', args.process)]
log.info({ 'processing steps': processing_options })
if os.path.exists(json_file):
os.remove(json_file)
steps = [step for step in processing_options if step in ['face', 'body', 'original']]
for step in steps:
# processing_options = [step for step in processing_options if step not in ['face', 'body', 'original']].append(step)
if step == 'face':
opts = [step for step in processing_options if step not in ['body', 'original']]
if step == 'body':
opts = [step for step in processing_options if step not in ['face', 'original', 'upscale', 'restore']]
if step == 'original':
opts = [step for step in processing_options if step not in ['face', 'body', 'upscale', 'restore', 'blur', 'range']]
log.info({ 'processing step': opts })
concept = step
if concept == 'original' and args.tag is not None:
concept = args.tag.split(',')[0].strip()
dir = os.path.join(base, str(args.repeats) + '_' + concept)
if os.path.exists(dir):
shutil.rmtree(dir, ignore_errors=True)
Path(dir).mkdir(parents=True, exist_ok=True)
for f in files:
try:
res, metadata = modules.process.process_file(f = f, dst = dir, preview = False, offline = args.offline, txt = args.dreambooth, tag = args.tag, opts = opts)
if not args.dreambooth:
with open(json_file, "w") as outfile:
outfile.write(json.dumps(metadata, indent=2))
except ValueError as e:
exit(1)
log.info({ 'processed step': step, 'outputs': res, 'inputs': len(files), 'metadata': json_file, 'path': dir })
modules.process.unload_models()
mem_stats()
dirs = [os.path.join(base, dir) for dir in os.listdir(base) if os.path.isdir(os.path.join(base, dir))]
log.info({ 'input datasets': dirs, 'metadata': json_file })
if not args.nolatents and not args.dreambooth:
# create latents
for dir in dirs:
latents.create_vae_latents(Map({ 'input': dir, 'json': json_file }))
latents.unload_vae()
mem_stats()
else:
log.info({ 'skip processing': len(files), 'metadata': json_file, 'path': dir })
if args.shutdown:
log.info({ 'server shutdown required': True })
modules.sdapi.shutdown()
time.sleep(1)
if args.lycoris:
log.info({ 'using lycoris network': True })
options.network_module = 'lycoris.kohya'
if not args.notrain:
train(options)
mem_stats()