Skip to content

Latest commit

 

History

History
321 lines (217 loc) · 14.6 KB

README.md

File metadata and controls

321 lines (217 loc) · 14.6 KB

Ansible Automation Workshop Provisioner

The github.com/ansible/workshops contains an Ansible Playbook provision_lab.yml, which is an automated lab setup for Ansible training on AWS (Amazon Web Services). Set the workshop_type variable below to provision the corresponding workshop.

Workshop Workshop Type Var
Ansible for Red Hat Enterprise Linux Workshop workshop_type: rhel
Ansible for Red Hat Enterprise Linux Workshop - 90 minutes workshop_type: rhel_90
Ansible Network Automation Workshop workshop_type: network
Ansible F5 Workshop workshop_type: f5
Ansible Security Automation workshop_type: security
Ansible Windows Automation workshop_type: windows
Ansible Demo Mode workshop_type: demo
Smart Management Workshop workshop_type: smart_mgmt

Table Of Contents

Table of Contents

Requirements

  • You can either use an execution environment (preferred) or install all the requirements into a virtual environment

    • Required collections are listed in requirements.yml
    • Required Python packages are listed in requirements.txt
    • ansible-navigator if you are going to use execution environments
  • AWS Account (follow directions in one time setup below)

Lab Setup

One Time Setup

For One Time Setup - click here

Ansible-Navigator

If you are going to use ansible-navigator and the workshop execution environment there are two (2) differences from ansible-playbook method used previously:

1. AWS Creds for Execution Environments

You need to set your AWS credentials as environment variables. This is because the execution environment will not have access to your ~/.aws/credentials file. This is preferred anyway because it matches the behavior in Automation controller.

export AWS_ACCESS_KEY_ID=AKIA6ABLAH1223VBD3W
export AWS_SECRET_ACCESS_KEY=zh6gFREbvblahblahblahfXIC5nZr51OgdKECaSIMBi9Kc

To make environment variables permanent and persistent you can set this to your ~/.bash_rc. See Red Hat Knowledge Base article: https://access.redhat.com/solutions/157293

2. Running Ansible-Navigator from the project root

You must run from the project root rather than the /provisioner folder. This is so all the files in the Git project are mounted, not just the provisioner folder. This is also best practice because it matches the behavior in Automation controller.

For example:

ansible-navigator run provisioner/provision_lab.yml -e @provisioner/extra_vars.yml

Setup (per workshop)

  • Define the following variables in a file passed in using -e @extra_vars.yml
---
# region where the nodes will live
ec2_region: us-east-1

# name prefix for all the VMs
ec2_name_prefix: TESTWORKSHOP

# creates student_total of workbenches for the workshop
student_total: 2

# Set the right workshop type, like network, rhel or f5 (see above)
workshop_type: rhel

# Generate offline token to authenticate the calls to Red Hat's APIs
# Can be accessed at https://access.redhat.com/management/api
offline_token: "eyQ.60y_ezoosYst_FJlZfVsud9qGbDt7QRly6nhprqVEREi......XYZ"

# Required for podman authentication to registry.redhat.io
redhat_username: <redhat_username>
redhat_password: <redhat_password>

#####OPTIONAL VARIABLES

# turn DNS on for control nodes, and set to type in valid_dns_type
dns_type: aws

# password for Ansible control node
admin_password: your_password123

# Sets the Route53 DNS zone to use for Amazon Web Services
workshop_dns_zone: demoredhat.com

# automatically installs Tower to control node
controllerinstall: true

# forces ansible.workshops collection to install latest edits every time
developer_mode: true

# SHA value of targeted AAP bundle setup files.
provided_sha_value: ea2843fae672274cb1b32447c9a54c627aa5bdf5577d9a6c7f957efe68be8c01

# Automation controller install setup command. Default: "./setup.sh -e gpgcheck=0" if undefined or empty
controller_install_command: './setup.sh -e gpgcheck=0'

# default vars for ec2 AMIs (ec2_info) are located in provisioner/roles/manage_ec2_instances/defaults/main/main.yml
# select ec2_info AMI vars can be overwritten via ec2_xtra vars, e.g.:
ec2_xtra:
  satellite:
    owners: 012345678910
    filter: Satellite*
    username: ec2-user
    os_type: linux
    size: r5b.2xlarge

# Registry name to download execution environments
ee_registry_name: registry.redhat.io

# List of execution environments to download during controller installation:
ee_images:
   - "{{ ee_registry_name }}/ansible-automation-platform-21/ee-29-rhel8:latest"
   - "{{ ee_registry_name }}/ee-supported-rhel8:latest"
   - "{{ ee_registry_name }}/ansible-automation-platform-21/ee-minimal-rhel8:latest"

# "Default execution environment" for controller
ee_default_image: "{{ ee_registry_name }}/ee-supported-rhel8:latest"

Automation controller license

In order to use Automation controller (i.e. controllerinstall: true), which is the default behavior (as seen in group_vars/all.yml) you need to have a valid subscription via a manifest.zip file. To retrieve your manifest.zip file you need to download it from access.redhat.com.

How do you use the manifest.zip with the workshop?

There are currently two ways to integrate your license file with the workshop:

  1. Put the manifest.zip file into provisioner folder

The first way is to make sure your license/manifest has the exact name manifest.zip and put it into the same folder as the provision_lab.yml playbook (e.g.) <your-path>/workshops/provisioner/manifest.zip

  1. Turn the manifest.zip into a variable

The second way is to turn the manifest.zip into a base64 variable.

This allows the manifest.zip to be treated like an Ansible variable so that it can work with CI systems like Github Actions or Zuul. This also makes it easier to work with Automation controller, in case you are spinning up a workshop using Automation controller itself.

To do this use the base64 command to encode the manifest:

base64 manifest.zip > base64_platform_manifest.txt

Take the output of this command and set it to a variable base64_manifest in your extra_vars file.

e.g.

base64_manifest: 2342387234872dfsdlkjf23148723847dkjfskjfksdfj

Note

The manifest.zip is substantially larger than the tower.license file, so the base64_manifest base64 might be several hundred lines long if you have text wrapping in your editor.

Note

base64 is not encryption, if you require encryption you need to work within your CI system or Automation controller to encrypt the base64 encoded manifest.zip.

Additional examples

For more extra_vars examples, look at the following:

ansible-playbook provision_lab.yml -e @extra_vars.yml
  • Login to the AWS EC2 console and you will see instances being created. For example:
testworkshop-student1-ansible

Accessing student documentation and slides

  • Exercises and instructor slides are hosted at aap2.demoredhat.com

  • Workbench information is stored in two places after you provision:

    • in a local directory named after the workshop (e.g. testworkshop/instructor_inventory)

    • By default there will be a website ec2_name_prefix.workshop_dns_zone (e.g. testworkshop.rhdemo.io)

      • NOTE: It is possible to change the DNS domain (right now this is only supported via a AWS Route 53 Hosted Zone) using the parameter workshop_dns_zone in your extra_vars.yml file.
      • NOTE: The playbook does not create the route53 zone and must exist prior to running the playbook.

Accessing instructor inventory

  • The instructor inventory will be copied to /tmp on student1's control_node as part of the control_nodes role.
  • The instructor can see all assigned students and what their workbench is by visiting ec2_name_prefix.workshop_dns_zone/list.php (e.g. testworkshop.rhdemo.io/list.php)

DNS

The provisioner currently supports creating DNS records per control node with valid SSL certs using Lets Encrypt. Right now DNS is only supported via AWS Route 53, however we are building it in a way that this can be more pluggable and take advantage of other public clouds.

This means that each student workbench will get an individual DNS entry. For example a DNS name will look like this: https://student1.testworkshop.rhdemo.io

  • NOTE: The variable dns_type defaults to aws. This can also be set to dns_type: none.
  • NOTE: If Lets Encrypt fails, the workshop provisioner will still pass, and alert you of errors in the summary_information at the end of the provision_lab.yml Ansible Playbook.

Smart Management

The Smart Management Lab relies on a prebuilt AMI for Red Hat Satellite Server. An example for building this AMI can be found here.

The Smart Management Lab also requires AWS DNS to be enabled. See sample vars for required configuration.

Developer Mode and understanding collections

The Ansible Workshops are actually a collection. Every role is called using the FQCN (fully qualified collection name). For example to setup the control node (e.g. install Automation controller) we call the role

- include_role:
    name: ansible.workshops.control_node

This installs locally from Git (versus from Galaxy or Automation Hub). If the galaxy.yml version matches your installed version, it will skip the install (speed up provisioning). Using developer_mode: true if your extra_vars will force installation every time. This is super common when you are editing a role and want to immediately see changes without publishing the collection.

If you want to contribute to the workshops, check out the contribution guide.

Lab Teardown

The teardown_lab.yml playbook deletes all the training instances as well as local inventory files.

To destroy all the EC2 instances after training is complete:

  • Run the playbook:
ansible-playbook teardown_lab.yml -e @extra_vars.yml
  • Optionally you can enable verbose debug output of the information gathered that drives the teardown process by passing the extra optional variable debug_teardown=true. Example:
ansible-playbook teardown_lab.yml -e @extra_vars.yml -e debug_teardown=true

Demos

There is a variable you can pass in within your extra_vars named demo. When this keyword is defined it will install the specified demo from the Github repository https://github.com/ansible/product-demos.h

For example you can put:

demo: all

Which will install all demos onto the Ansible Tower instance. Not all demos will work on any workshop_type. Please refer to the Demo repository list.

FAQ

For frequently asked questions see the FAQ

More info on what is happening

The provision_lab.yml playbook creates a work bench for each student, configures them for password authentication, and creates an inventory file for each user with their IPs and credentials. An instructor inventory file is also created in the current directory which will let the instructor access the nodes of any student. This file will be called instructor_inventory.txt

What does the AWS provisioner take care of automatically?

  • AWS VPC creation (Amazon WebServices Virtual Private Cloud)
  • Creation of an SSH key pair (stored at ./WORKSHOPNAME/WORKSHOPNAME-private.pem)
  • Creation of a AWS EC2 security group
  • Creation of a subnet for the VPC
  • Creation of an internet gateway for the VPC
  • Creation of route table for VPC (for reachability from internet)

Getting Help

Please file issues on Github. Please fill out all required information. Your issue will be closed if you skip required information in the Github issues template.

Ansible-Workshop-Logo.png