-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathadalinegb.py
98 lines (76 loc) · 2.53 KB
/
adalinegb.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
from matplotlib import markers
import numpy as np
class AdalineGB(object):
"""
Adaptive linear Neuron classifier
Parameters
-----------
eta : float
Learning rate (between 0.0 and 1.0)
n_iter: int
Passes over the training dataset
Attributes
----------
w_: 1d-array
Weights after fitting
errors_ : list
Number of misclassifications in every epoch
"""
def __init__(self, eta=0.01, n_iter=50):
self.eta = eta
self.n_iter = n_iter
def fit(self, X, y):
"""
Fit training data
Parameters
----------
X : {array-like}, shape = [n_samples, n_features]
Training vectors, where n_samples is the number of
samples and n_features is the number of features-
y : {array-like}, shape = [n_samples]
Target values
Returns
-------
self : object
"""
self.w_ = np.zeros(1 + X.shape[1])
self.cost_ = []
for _ in range(self.n_iter):
output = self.net_input(X)
errors = (y - output)
self.w_[1:] += self.eta * X.T.dot(errors)
self.w_[0] += self.eta * errors.sum()
cost = (errors**2).sum()/2.0
self.cost_.append(cost)
return self
def net_input(self, X):
"""Calculate net input"""
return np.dot(X, self.w_[1:]) + self.w_[0]
def activation(self, X):
"""Compute linear activation"""
return self.net_input(X)
def predict(self, X):
"""Returns class label after unit step"""
return np.where(self.net_input(X) >= 0.0, 1, -1)
# Grab training data from internet
import pandas as pd
import numpy as np
df = pd.read_csv('https://archive.ics.uci.edu/ml/machine-learning-databases/iris/iris.data', header=None)
print(df.head())
y = df.iloc[:100, 4].values
y = np.where(y== 'Iris-setosa', -1, 1)
X = df.iloc[:100, [0,2]].values
# traint and plot
import matplotlib.pyplot as plt
fig, ax = plt.subplots(nrows=1, ncols=2, figsize=(8, 4))
ada1 = AdalineGB(eta=0.1, n_iter=30).fit(X, y)
ax[0].plot(range(1, len(ada1.cost_) + 1), np.log10(ada1.cost_), marker='o')
ax[0].set_xlabel("Epochs")
ax[0].set_ylabel("log(Sum-squared-error")
ax[0].set_title("Adaline learning rate 0.01")
ada2 = AdalineGB(n_iter=30, eta=0.0001).fit(X, y)
ax[1].plot(range(1, len(ada2.cost_) + 1), np.log10(ada2.cost_), marker='o')
ax[1].set_xlabel("Epochs")
ax[1].set_ylabel("log(Sum-squared-error")
ax[1].set_title("Adaline learning rate 0.0001")
plt.show()