forked from arkworks-rs/algebra
-
Notifications
You must be signed in to change notification settings - Fork 0
/
sparse.rs
467 lines (433 loc) · 15.9 KB
/
sparse.rs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
//! A sparse multivariate polynomial represented in coefficient form.
use crate::{
multivariate::{SparseTerm, Term},
DenseMVPolynomial, Polynomial,
};
use ark_ff::{Field, Zero};
use ark_serialize::{CanonicalDeserialize, CanonicalSerialize};
use ark_std::{
cmp::Ordering,
fmt,
ops::{Add, AddAssign, Neg, Sub, SubAssign},
rand::Rng,
vec::Vec,
};
#[cfg(feature = "parallel")]
use rayon::prelude::*;
/// Stores a sparse multivariate polynomial in coefficient form.
#[derive(Derivative, CanonicalSerialize, CanonicalDeserialize)]
#[derivative(Clone, PartialEq, Eq, Hash, Default)]
pub struct SparsePolynomial<F: Field, T: Term> {
/// The number of variables the polynomial supports
#[derivative(PartialEq = "ignore")]
pub num_vars: usize,
/// List of each term along with its coefficient
pub terms: Vec<(F, T)>,
}
impl<F: Field, T: Term> SparsePolynomial<F, T> {
fn remove_zeros(&mut self) {
self.terms.retain(|(c, _)| !c.is_zero());
}
}
impl<F: Field> Polynomial<F> for SparsePolynomial<F, SparseTerm> {
type Point = Vec<F>;
/// Returns the total degree of the polynomial
///
/// # Examples
/// ```
/// use ark_poly::{
/// polynomial::multivariate::{SparsePolynomial, SparseTerm},
/// DenseMVPolynomial, Polynomial,
/// };
/// use ark_std::test_rng;
/// use ark_test_curves::bls12_381::Fq;
///
/// let rng = &mut test_rng();
/// // Create a multivariate polynomial of degree 7
/// let poly: SparsePolynomial<Fq, SparseTerm> = SparsePolynomial::rand(7, 2, rng);
/// assert_eq!(poly.degree(), 7);
/// ```
fn degree(&self) -> usize {
self.terms
.iter()
.map(|(_, term)| term.degree())
.max()
.unwrap_or(0)
}
/// Evaluates `self` at the given `point` in `Self::Point`.
///
/// # Examples
/// ```
/// use ark_ff::UniformRand;
/// use ark_poly::{
/// polynomial::multivariate::{SparsePolynomial, SparseTerm, Term},
/// DenseMVPolynomial, Polynomial,
/// };
/// use ark_std::test_rng;
/// use ark_test_curves::bls12_381::Fq;
///
/// let rng = &mut test_rng();
/// let poly = SparsePolynomial::rand(4, 3, rng);
/// let random_point = vec![Fq::rand(rng); 3];
/// // The result will be a single element in the field.
/// let result: Fq = poly.evaluate(&random_point);
/// ```
fn evaluate(&self, point: &Vec<F>) -> F {
assert!(point.len() >= self.num_vars, "Invalid evaluation domain");
if self.is_zero() {
return F::zero();
}
cfg_into_iter!(&self.terms)
.map(|(coeff, term)| *coeff * term.evaluate(point))
.sum()
}
}
impl<F: Field> DenseMVPolynomial<F> for SparsePolynomial<F, SparseTerm> {
/// Returns the number of variables in `self`
fn num_vars(&self) -> usize {
self.num_vars
}
/// Outputs an `l`-variate polynomial which is the sum of `l` `d`-degree
/// univariate polynomials where each coefficient is sampled uniformly at random.
fn rand<R: Rng>(d: usize, l: usize, rng: &mut R) -> Self {
let mut random_terms = vec![(F::rand(rng), SparseTerm::new(vec![]))];
for var in 0..l {
for deg in 1..=d {
random_terms.push((F::rand(rng), SparseTerm::new(vec![(var, deg)])));
}
}
Self::from_coefficients_vec(l, random_terms)
}
type Term = SparseTerm;
/// Constructs a new polynomial from a list of tuples of the form `(coeff, Self::Term)`
///
/// # Examples
/// ```
/// use ark_poly::{
/// polynomial::multivariate::{SparsePolynomial, SparseTerm, Term},
/// DenseMVPolynomial, Polynomial,
/// };
/// use ark_test_curves::bls12_381::Fq;
///
/// // Create a multivariate polynomial in 3 variables, with 4 terms:
/// // 2*x_0^3 + x_0*x_2 + x_1*x_2 + 5
/// let poly = SparsePolynomial::from_coefficients_vec(
/// 3,
/// vec![
/// (Fq::from(2), SparseTerm::new(vec![(0, 3)])),
/// (Fq::from(1), SparseTerm::new(vec![(0, 1), (2, 1)])),
/// (Fq::from(1), SparseTerm::new(vec![(1, 1), (2, 1)])),
/// (Fq::from(5), SparseTerm::new(vec![])),
/// ],
/// );
/// ```
fn from_coefficients_vec(num_vars: usize, mut terms: Vec<(F, SparseTerm)>) -> Self {
// Ensure that terms are in ascending order.
terms.sort_by(|(_, t1), (_, t2)| t1.cmp(t2));
// If any terms are duplicated, add them together
let mut terms_dedup: Vec<(F, SparseTerm)> = Vec::new();
for term in terms {
if let Some(prev) = terms_dedup.last_mut() {
if prev.1 == term.1 {
*prev = (prev.0 + term.0, prev.1.clone());
continue;
}
};
// Assert correct number of indeterminates
assert!(
term.1.iter().all(|(var, _)| *var < num_vars),
"Invalid number of indeterminates"
);
terms_dedup.push(term);
}
let mut result = Self {
num_vars,
terms: terms_dedup,
};
// Remove any terms with zero coefficients
result.remove_zeros();
result
}
/// Returns the terms of a `self` as a list of tuples of the form `(coeff, Self::Term)`
fn terms(&self) -> &[(F, Self::Term)] {
self.terms.as_slice()
}
}
impl<F: Field, T: Term> Add for SparsePolynomial<F, T> {
type Output = SparsePolynomial<F, T>;
fn add(self, other: SparsePolynomial<F, T>) -> Self {
&self + &other
}
}
impl<'a, 'b, F: Field, T: Term> Add<&'a SparsePolynomial<F, T>> for &'b SparsePolynomial<F, T> {
type Output = SparsePolynomial<F, T>;
fn add(self, other: &'a SparsePolynomial<F, T>) -> SparsePolynomial<F, T> {
let mut result = Vec::new();
let mut cur_iter = self.terms.iter().peekable();
let mut other_iter = other.terms.iter().peekable();
// Since both polynomials are sorted, iterate over them in ascending order,
// combining any common terms
loop {
// Peek at iterators to decide which to take from
let which = match (cur_iter.peek(), other_iter.peek()) {
(Some(cur), Some(other)) => Some((cur.1).cmp(&other.1)),
(Some(_), None) => Some(Ordering::Less),
(None, Some(_)) => Some(Ordering::Greater),
(None, None) => None,
};
// Push the smallest element to the `result` coefficient vec
let smallest = match which {
Some(Ordering::Less) => cur_iter.next().unwrap().clone(),
Some(Ordering::Equal) => {
let other = other_iter.next().unwrap();
let cur = cur_iter.next().unwrap();
(cur.0 + other.0, cur.1.clone())
},
Some(Ordering::Greater) => other_iter.next().unwrap().clone(),
None => break,
};
result.push(smallest);
}
// Remove any zero terms
result.retain(|(c, _)| !c.is_zero());
SparsePolynomial {
num_vars: core::cmp::max(self.num_vars, other.num_vars),
terms: result,
}
}
}
impl<'a, F: Field, T: Term> AddAssign<&'a SparsePolynomial<F, T>> for SparsePolynomial<F, T> {
fn add_assign(&mut self, other: &'a SparsePolynomial<F, T>) {
*self = &*self + other;
}
}
impl<'a, F: Field, T: Term> AddAssign<(F, &'a SparsePolynomial<F, T>)> for SparsePolynomial<F, T> {
fn add_assign(&mut self, (f, other): (F, &'a SparsePolynomial<F, T>)) {
let other = Self {
num_vars: other.num_vars,
terms: other
.terms
.iter()
.map(|(coeff, term)| (*coeff * f, term.clone()))
.collect(),
};
// Note the call to `Add` will remove also any duplicates
*self = &*self + &other;
}
}
impl<F: Field, T: Term> Neg for SparsePolynomial<F, T> {
type Output = SparsePolynomial<F, T>;
#[inline]
fn neg(mut self) -> SparsePolynomial<F, T> {
for coeff in &mut self.terms {
(coeff).0 = -coeff.0;
}
self
}
}
impl<'a, 'b, F: Field, T: Term> Sub<&'a SparsePolynomial<F, T>> for &'b SparsePolynomial<F, T> {
type Output = SparsePolynomial<F, T>;
#[inline]
fn sub(self, other: &'a SparsePolynomial<F, T>) -> SparsePolynomial<F, T> {
let neg_other = other.clone().neg();
self + &neg_other
}
}
impl<'a, F: Field, T: Term> SubAssign<&'a SparsePolynomial<F, T>> for SparsePolynomial<F, T> {
#[inline]
fn sub_assign(&mut self, other: &'a SparsePolynomial<F, T>) {
*self = &*self - other;
}
}
impl<F: Field, T: Term> fmt::Debug for SparsePolynomial<F, T> {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> Result<(), fmt::Error> {
for (coeff, term) in self.terms.iter().filter(|(c, _)| !c.is_zero()) {
if term.is_constant() {
write!(f, "\n{:?}", coeff)?;
} else {
write!(f, "\n{:?} {:?}", coeff, term)?;
}
}
Ok(())
}
}
impl<F: Field, T: Term> Zero for SparsePolynomial<F, T> {
/// Returns the zero polynomial.
fn zero() -> Self {
Self {
num_vars: 0,
terms: Vec::new(),
}
}
/// Checks if the given polynomial is zero.
fn is_zero(&self) -> bool {
self.terms.is_empty() || self.terms.iter().all(|(c, _)| c.is_zero())
}
}
#[cfg(test)]
mod tests {
use super::*;
use ark_ff::{Field, UniformRand, Zero};
use ark_std::test_rng;
use ark_test_curves::bls12_381::Fr;
// TODO: Make tests generic over term type
/// Generate random `l`-variate polynomial of maximum individual degree `d`
fn rand_poly<R: Rng>(l: usize, d: usize, rng: &mut R) -> SparsePolynomial<Fr, SparseTerm> {
let mut random_terms = Vec::new();
let num_terms = rng.gen_range(1..1000);
// For each term, randomly select up to `l` variables with degree
// in [1,d] and random coefficient
random_terms.push((Fr::rand(rng), SparseTerm::new(vec![])));
for _ in 1..num_terms {
let term = (0..l)
.map(|i| {
if rng.gen_bool(0.5) {
Some((i, rng.gen_range(1..(d + 1))))
} else {
None
}
})
.flatten()
.collect();
let coeff = Fr::rand(rng);
random_terms.push((coeff, SparseTerm::new(term)));
}
SparsePolynomial::from_coefficients_slice(l, &random_terms)
}
/// Perform a naive n^2 multiplication of `self` by `other`.
fn naive_mul(
cur: &SparsePolynomial<Fr, SparseTerm>,
other: &SparsePolynomial<Fr, SparseTerm>,
) -> SparsePolynomial<Fr, SparseTerm> {
if cur.is_zero() || other.is_zero() {
SparsePolynomial::zero()
} else {
let mut result_terms = Vec::new();
for (cur_coeff, cur_term) in cur.terms.iter() {
for (other_coeff, other_term) in other.terms.iter() {
let mut term = cur_term.0.clone();
term.extend(other_term.0.clone());
result_terms.push((*cur_coeff * *other_coeff, SparseTerm::new(term)));
}
}
SparsePolynomial::from_coefficients_slice(cur.num_vars, result_terms.as_slice())
}
}
#[test]
fn add_polynomials() {
let rng = &mut test_rng();
let max_degree = 10;
for a_var_count in 1..20 {
for b_var_count in 1..20 {
let p1 = rand_poly(a_var_count, max_degree, rng);
let p2 = rand_poly(b_var_count, max_degree, rng);
let res1 = &p1 + &p2;
let res2 = &p2 + &p1;
assert_eq!(res1, res2);
}
}
}
#[test]
fn sub_polynomials() {
let rng = &mut test_rng();
let max_degree = 10;
for a_var_count in 1..20 {
for b_var_count in 1..20 {
let p1 = rand_poly(a_var_count, max_degree, rng);
let p2 = rand_poly(b_var_count, max_degree, rng);
let res1 = &p1 - &p2;
let res2 = &p2 - &p1;
assert_eq!(&res1 + &p2, p1);
assert_eq!(res1, -res2);
}
}
}
#[test]
fn evaluate_polynomials() {
let rng = &mut test_rng();
let max_degree = 10;
for var_count in 1..20 {
let p = rand_poly(var_count, max_degree, rng);
let mut point = Vec::with_capacity(var_count);
for _ in 0..var_count {
point.push(Fr::rand(rng));
}
let mut total = Fr::zero();
for (coeff, term) in p.terms.iter() {
let mut summand = *coeff;
for var in term.iter() {
let eval = point.get(var.0).unwrap();
summand *= eval.pow(&[var.1 as u64]);
}
total += summand;
}
assert_eq!(p.evaluate(&point), total);
}
}
#[test]
fn add_and_evaluate_polynomials() {
let rng = &mut test_rng();
let max_degree = 10;
for a_var_count in 1..20 {
for b_var_count in 1..20 {
let p1 = rand_poly(a_var_count, max_degree, rng);
let p2 = rand_poly(b_var_count, max_degree, rng);
let mut point = Vec::new();
for _ in 0..core::cmp::max(a_var_count, b_var_count) {
point.push(Fr::rand(rng));
}
// Evaluate both polynomials at a given point
let eval1 = p1.evaluate(&point);
let eval2 = p2.evaluate(&point);
// Add polynomials
let sum = &p1 + &p2;
// Evaluate result at same point
let eval3 = sum.evaluate(&point);
assert_eq!(eval1 + eval2, eval3);
}
}
}
#[test]
/// This is just to make sure naive_mul works as expected
fn mul_polynomials_fixed() {
let a = SparsePolynomial::from_coefficients_slice(
4,
&[
("2".parse().unwrap(), SparseTerm(vec![])),
("4".parse().unwrap(), SparseTerm(vec![(0, 1), (1, 2)])),
("8".parse().unwrap(), SparseTerm(vec![(0, 1), (0, 1)])),
("1".parse().unwrap(), SparseTerm(vec![(3, 0)])),
],
);
let b = SparsePolynomial::from_coefficients_slice(
4,
&[
("1".parse().unwrap(), SparseTerm(vec![(0, 1), (1, 2)])),
("2".parse().unwrap(), SparseTerm(vec![(2, 1)])),
("1".parse().unwrap(), SparseTerm(vec![(3, 1)])),
],
);
let result = naive_mul(&a, &b);
let expected = SparsePolynomial::from_coefficients_slice(
4,
&[
("3".parse().unwrap(), SparseTerm(vec![(0, 1), (1, 2)])),
("6".parse().unwrap(), SparseTerm(vec![(2, 1)])),
("3".parse().unwrap(), SparseTerm(vec![(3, 1)])),
("4".parse().unwrap(), SparseTerm(vec![(0, 2), (1, 4)])),
(
"8".parse().unwrap(),
SparseTerm(vec![(0, 1), (1, 2), (2, 1)]),
),
(
"4".parse().unwrap(),
SparseTerm(vec![(0, 1), (1, 2), (3, 1)]),
),
("8".parse().unwrap(), SparseTerm(vec![(0, 3), (1, 2)])),
("16".parse().unwrap(), SparseTerm(vec![(0, 2), (2, 1)])),
("8".parse().unwrap(), SparseTerm(vec![(0, 2), (3, 1)])),
],
);
assert_eq!(expected, result);
}
}