-
Notifications
You must be signed in to change notification settings - Fork 22
/
Copy pathtrain.py
216 lines (158 loc) · 8.29 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
import torch
import torch.nn.functional as F
import numpy as np
import os
from omegaconf import OmegaConf
from dataloader.dataset import CLIP_COCO_dataset
from dataloader.data_loaders import get_dataloader
from model.model import CLIP
from utils.simple_tokenizer import SimpleTokenizer
from utils.custom_schedulers import get_cosine_schedule_with_warmup, get_cosine_with_hard_restarts_schedule_with_warmup
from utils import set_seed, mkdir, setup_logger, load_config_file
from torch.optim import Adam, AdamW # both are same but AdamW has a default weight decay
import argparse
DATA_CONFIG_PATH = 'dataloader/data_config.yaml'
TRAINER_CONFIG_PATH = 'trainer/train_config.yaml'
MODEL_CONFIG_PATH = 'model/model_config.yaml'
def train(config, train_dataset, model):
'''
Trains the model.
'''
config.train_batch_size = config.per_gpu_train_batch_size * max(1, config.n_gpu)
train_dataloader = get_dataloader(config, train_dataset, is_train=True)
# total training iterations
t_total = len(train_dataloader) // config.gradient_accumulation_steps \
* config.num_train_epochs
optimizer = AdamW(model.parameters(), lr=config.optimizer.params.lr, eps=config.optimizer.params.eps, weight_decay=config.optimizer.params.weight_decay)
# Warmup iterations = 20% of total iterations
num_warmup_steps = int(0.20 * t_total)
scheduler = get_cosine_schedule_with_warmup(optimizer, num_warmup_steps= num_warmup_steps, num_training_steps= t_total)
if config.n_gpu > 1:
model = torch.nn.DataParallel(model)
model = model.to(torch.device(config.device))
model.train()
logger.info("***** Running training *****")
logger.info(" Num examples = %d", len(train_dataset))
logger.info(" Num Epochs = %d", config.num_train_epochs)
logger.info(" Number of GPUs = %d", config.n_gpu)
logger.info(" Batch size per GPU = %d", config.per_gpu_train_batch_size)
logger.info(" Total train batch size (w. parallel, & accumulation) = %d",
config.train_batch_size * config.gradient_accumulation_steps)
logger.info(" Gradient Accumulation steps = %d", config.gradient_accumulation_steps)
logger.info(" Total optimization steps = %d", t_total)
if scheduler:
logger.info(" warmup steps = %d", num_warmup_steps)
global_step, global_loss, global_acc =0, 0.0, 0.0
model.zero_grad()
for epoch in range(int(config.num_train_epochs)):
for step, batch in enumerate(train_dataloader):
input_images, input_texts = batch
input_images = input_images.to(torch.device(config.device))
input_texts = input_texts.to(torch.device(config.device))
image_features, text_features = model(input_images, input_texts)
# normalized features
image_features = image_features / image_features.norm(dim=-1, keepdim=True)
text_features = text_features / text_features.norm(dim=-1, keepdim=True)
if config.n_gpu == 1:
logit_scale = model.logit_scale.exp()
elif config.n_gpu > 1:
logit_scale = model.module.logit_scale.exp()
logits_per_image = logit_scale * image_features @ text_features.t()
logits_per_text = logit_scale * text_features @ image_features.t()
labels = torch.arange(len(logits_per_image)).to(logits_per_image.device)
image_loss = F.cross_entropy(logits_per_image, labels)
text_loss = F.cross_entropy(logits_per_text, labels)
loss = (image_loss + text_loss) / 2
if config.n_gpu > 1:
loss = loss.mean() # mean() to average on multi-gpu parallel training
if config.gradient_accumulation_steps > 1:
loss = loss / config.gradient_accumulation_steps
loss.backward()
global_loss += loss.item()
if (step + 1) % config.gradient_accumulation_steps == 0:
global_step += 1
optimizer.step() # PYTORCH 1.x : call optimizer.step() first then scheduler.step()
# logit scaling set as max 100 as mentioned in CLIP paper # log(100) = 4.6052
if config.n_gpu == 1:
model.logit_scale.data = torch.clamp(model.logit_scale.data, 0, 4.6052)
elif config.n_gpu > 1:
model.module.logit_scale.data = torch.clamp(model.module.logit_scale.data, 0, 4.6052)
if scheduler:
scheduler.step()
model.zero_grad()
if global_step % config.logging_steps == 0:
logger.info("Epoch: {}, global_step: {}, lr: {:.6f}, loss: {:.4f} ({:.4f})".format(epoch, global_step,
optimizer.param_groups[0]["lr"], loss.item(), global_loss / global_step)
)
if (config.save_steps > 0 and global_step % config.save_steps == 0) or \
global_step == t_total:
# saving checkpoint
save_checkpoint(config, epoch, global_step, model, optimizer)
return global_step, global_loss / global_step
def save_checkpoint(config, epoch, global_step, model, optimizer):
'''
Checkpointing. Saves model and optimizer state_dict() and current epoch and global training steps.
'''
checkpoint_path = os.path.join(config.saved_checkpoints, f'checkpoint_{epoch}_{global_step}.pt')
save_num = 0
while (save_num < 10):
try:
if config.n_gpu > 1:
torch.save({
'epoch' : epoch,
'global_step' : global_step,
'model_state_dict' : model.module.state_dict(),
'optimizer_state_dict': optimizer.state_dict()
}, checkpoint_path)
else:
torch.save({
'epoch' : epoch,
'global_step' : global_step,
'model_state_dict' : model.state_dict(),
'optimizer_state_dict': optimizer.state_dict()
}, checkpoint_path)
logger.info("Save checkpoint to {}".format(checkpoint_path))
break
except:
save_num += 1
if save_num == 10:
logger.info("Failed to save checkpoint after 10 trails.")
return
def main():
parser = argparse.ArgumentParser()
parser.add_argument("--train_img_dir", default=None, type=str, required=False, help="path of directory containing COCO training images")
parser.add_argument("--train_annotation_file", default=None, type=str, required=False, help="path of COCO annotation file")
args = parser.parse_args()
data_config = load_config_file(DATA_CONFIG_PATH)
train_config = load_config_file(TRAINER_CONFIG_PATH)
model_config = load_config_file(MODEL_CONFIG_PATH)
config = OmegaConf.merge(train_config, data_config)
# config = OmegaConf.merge(OmegaConf.create(vars(args)), config)
# merging cli arguments, if data path given in cli args use those
if args.train_img_dir :
config.train_img_dir = args.train_img_dir
if args.train_annotation_file :
config.train_annotation_file = args.train_annotation_file
global logger
# creating directories for saving checkpoints and logs
mkdir(path=config.saved_checkpoints)
mkdir(path=config.logs)
logger = setup_logger("CLIP_COCO_TRAIN", config.logs, 0, filename = "training_logs.txt")
config.device = "cuda" if torch.cuda.is_available() else "cpu"
config.n_gpu = torch.cuda.device_count() # config.n_gpu
set_seed(seed=11, n_gpu=config.n_gpu)
# getting text tokenizer
tokenizer = SimpleTokenizer()
# creating RN50 CLIP model
model_params = dict(model_config.RN50)
model_params['vision_layers'] = tuple(model_params['vision_layers'])
model_params['vision_patch_size'] = None
model = CLIP(**model_params)
logger.info(f"Training/evaluation parameters {train_config}")
# getting dataset for training
train_dataset = CLIP_COCO_dataset(config, tokenizer)
# Now training
global_step, avg_loss = train(config, train_dataset, model)
logger.info("Training done: total_step = %s, avg loss = %s", global_step, avg_loss)
if __name__ == "__main__":
main()