-
Notifications
You must be signed in to change notification settings - Fork 0
/
app.py
204 lines (177 loc) · 7.42 KB
/
app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
# import the necessary packages
import numpy as np
import argparse
import time
import cv2
import os
from flask import Flask, request, Response, jsonify
import jsonpickle
import base64
import io as StringIO
import base64
from io import BytesIO
import io
import json
from PIL import Image
# import matplotlib.pyplot as plt
# construct the argument parse and parse the arguments
confthres = 0.3
nmsthres = 0.1
yolo_path = './'
def get_labels(labels_path):
# load the COCO class labels our YOLO model was trained on
#labelsPath = os.path.sep.join([yolo_path, "yolo_v3/coco.names"])
lpath=os.path.sep.join([yolo_path, labels_path])
LABELS = open(lpath).read().strip().split("\n")
return LABELS
def get_colors(LABELS):
# initialize a list of colors to represent each possible class label
np.random.seed(42)
COLORS = np.random.randint(0, 255, size=(len(LABELS), 3),dtype="uint8")
return COLORS
def get_weights(weights_path):
# derive the paths to the YOLO weights and model configuration
weightsPath = os.path.sep.join([yolo_path, weights_path])
return weightsPath
def get_config(config_path):
configPath = os.path.sep.join([yolo_path, config_path])
return configPath
def load_model(configpath,weightspath):
# load our YOLO object detector trained on COCO dataset (80 classes)
print("[INFO] loading YOLO from disk...")
net = cv2.dnn.readNetFromDarknet(configpath, weightspath)
return net
# def image_to_byte_array(image:Image):
# imgByteArr = io.BytesIO()
# image.save(imgByteArr, format='PNG')
# imgByteArr = base64.encodebytes(imgByteArr.getvalue()).decode('ascii')
# return imgByteArr
def image_to_byte_array(image:Image):
imgByteArr = io.BytesIO()
image.save(imgByteArr, format='PNG')
imgByteArr = imgByteArr.getvalue()
return imgByteArr
def get_response_image(image_path):
pil_img = Image.open(image_path, mode='r') # reads the PIL image
byte_arr = io.BytesIO()
pil_img.save(byte_arr, format='PNG') # convert the PIL image to byte array
encoded_img = base64.b64encode(byte_arr.getvalue()).decode('utf-8')# encode as base64
return encoded_img
def get_predection(image,net,LABELS,COLORS):
(H, W) = image.shape[:2]
# determine only the *output* layer names that we need from YOLO
ln = net.getLayerNames()
ln = [ln[i[0] - 1] for i in net.getUnconnectedOutLayers()]
# construct a blob from the input image and then perform a forward
# pass of the YOLO object detector, giving us our bounding boxes and
# associated probabilities
blob = cv2.dnn.blobFromImage(image, 1 / 255.0, (416, 416),
swapRB=True, crop=False)
net.setInput(blob)
start = time.time()
layerOutputs = net.forward(ln)
# print("layerOutputs {}".format(layerOutputs))
end = time.time()
# show timing information on YOLO
print("[INFO] YOLO took {:.6f} seconds".format(end - start))
# initialize our lists of detected bounding boxes, confidences, and
# class IDs, respectively
boxes = []
confidences = []
classIDs = []
# loop over each of the layer outputs
for output in layerOutputs:
# loop over each of the detections
for detection in output:
# extract the class ID and confidence (i.e., probability) of
# the current object detection
# print("D E T E c T I O N {}".format(detection))
scores = detection[5:]
# print(scores)
classID = np.argmax(scores)
# print("classID {}".format(classID))
confidence = scores[classID]
# print("CLASS IDSS = > {}".format(classID))
# filter out weak predictions by ensuring the detected
# probability is greater than the minimum probability
if confidence > confthres:
# scale the bounding box coordinates back relative to the
# size of the image, keeping in mind that YOLO actually
# returns the center (x, y)-coordinates of the bounding
# box followed by the boxes' width and height
box = detection[0:4] * np.array([W, H, W, H])
(centerX, centerY, width, height) = box.astype("int")
# use the center (x, y)-coordinates to derive the top and
# and left corner of the bounding box
x = int(centerX - (width / 2))
y = int(centerY - (height / 2))
# print(" X = {}, Y = {}".format(x, y))
# update our list of bounding box coordinates, confidences,
# and class IDs
boxes.append([x, y, int(width), int(height)])
confidences.append(float(confidence))
classIDs.append(classID)
# apply non-maxima suppression to suppress weak, overlapping bounding
# boxes
idxs = cv2.dnn.NMSBoxes(boxes, confidences, confthres,
nmsthres)
# print("IDXS {}".format(idxs))
# ensure at least one detection exists
predicted_class = ''
predicted_class_confidence = 0
if len(idxs) > 0:
# loop over the indexes we are keeping
for i in idxs.flatten():
# extract the bounding box coordinates
(x, y) = (boxes[i][0], boxes[i][1])
(w, h) = (boxes[i][2], boxes[i][3])
# draw a bounding box rectangle and label on the image
color = [int(c) for c in COLORS[classIDs[i]]]
cv2.rectangle(image, (x, y), (x + w, y + h), color, 2)
text = "{}: {:.4f}".format(LABELS[classIDs[i]], confidences[i])
predicted_class = LABELS[classIDs[i]]
predicted_class_confidence = round(confidences[i], 4)
# print(text)
# print(boxes)
# print("CLASS IDS {}".format(classIDs))
cv2.putText(image, text, (x, y - 5), cv2.FONT_HERSHEY_SIMPLEX,0.5, color, 2)
return image, predicted_class, predicted_class_confidence
labelsPath="yolo_v3/obj.names"
cfgpath="yolo_v3/yolov3-tiny.cfg"
wpath="yolo_v3/yolov3-tiny_17000.weights"
Lables=get_labels(labelsPath)
# print(Lables)
CFG=get_config(cfgpath)
Weights=get_weights(wpath)
nets=load_model(CFG,Weights)
Colors=get_colors(Lables)
# Initialize the Flask application
app = Flask(__name__)
# route http posts to this method
@app.route('/api/hello', methods=['GET'])
def hello():
return jsonify({"message": "Smart City Reviews - Server Active"})
@app.route('/api/test', methods=['POST'])
def main():
# load our input image and grab its spatial dimensions
#image = cv2.imread("./test1.jpg")
img = request.json["image"]
img = Image.open(io.BytesIO(base64.b64decode(img)))
npimg=np.array(img)
image=npimg.copy()
image=cv2.cvtColor(image,cv2.COLOR_BGR2RGB)
res, predict_class, confidence =get_predection(image,nets,Lables,Colors)
image=cv2.cvtColor(image,cv2.COLOR_BGR2RGB)
# show the output image
# plt.imshow(res, cmap = 'gray', interpolation = 'bicubic')
# plt.xticks([]), plt.yticks([]) # to hide tick values on X and Y axis
# plt.show()
np_img=Image.fromarray(image)
np_img.save("TEST.png")
encoded_img = get_response_image("TEST.png")
response = { 'Status' : 'Success', 'class_text': predict_class , "class_confidence": confidence, 'image': encoded_img}
return jsonify(response)
# return Response(response=img_encoded, status=200,mimetype="image/jpeg")
# start flask app
if __name__ == '__main__':
app.run(debug=True)