From 99ffb142b8c60fcbba85f2eca42eefed7ef40df3 Mon Sep 17 00:00:00 2001 From: Thomas Mock Date: Tue, 1 May 2018 14:10:03 -0500 Subject: [PATCH] Update README.md --- README.md | 10 +++++++--- 1 file changed, 7 insertions(+), 3 deletions(-) diff --git a/README.md b/README.md index 591a08a4f..df3b409b9 100644 --- a/README.md +++ b/README.md @@ -2,24 +2,28 @@ ## A weekly social data project (in R) -A weekly project that builds off #makeovermonday style projects but aimed at the R ecosystem. An emphasis will be placed on understanding how to summarize and arrange data to make meaningful charts with `ggplot2`, `tidyr`, `dplyr`, and other tools in the `tidyverse` ecosystem. +A weekly data project aimed at the R ecosystem. An emphasis will be placed on understanding how to summarize and arrange data to make meaningful charts with `ggplot2`, `tidyr`, `dplyr`, and other tools in the `tidyverse` ecosystem. *** Join the R4DS online learning community in the weekly #TidyTuesday event! Every week we post a raw dataset, an original chart associated with that dataset, and ask you to apply your take on the chart. While the data set will be “tamed”, it will not always be tidy! As such you might need to apply various R for Data Science techniques to wrangle the data into a true tidy format. The goal of Tidy Tuesday is to apply your R skills, get feedback, explore other’s work, and connect with the greater RStats community! As such we encourage everyone of all skills to participate! +We will have many sources of data and want to emphasize that no causation is implied. There are various moderating variables that affect all data, many of which might not have been captured in these datasets. As such, our guidelines are to use the data provided to practice your data tidying and plotting techniques. Participants are invited to consider for themselves what nuancing factors might underlie these relationships. + +The intent of Tidy Tuesday is to provide a safe and supportive forum for individuals to practice their **wrangling** and **data visualization** skills independent of drawing conclusions. While we understand that the two are related, the focus of this practice is purely on building skills with real-world data. + All data will be posted on the data sets page on Monday. It will include the link to the original article (for context) and to the data set. We welcome all newcomers, enthusiasts, and experts to participate, but be mindful of a few things: -1. The data set comes from the source article or the source that the article credits. Be mindful that the data is what it is and Tidy Tuesday is designed to help you practice *data visualization* and *basic data wrangling* in R. +1. The data set comes from the source article or the source that the article credits. Be mindful that the data is what it is and Tidy Tuesday is designed to help you practice **data visualization** and **basic data wrangling** in R. 2. Again, the data is what it is! You are welcome to explore beyond the provided dataset, but the data is provided as a "toy" dataset to practice techniques on. 3. This is NOT about criticizing the original article or graph. Real people made the graphs, collected or acquired the data! Focus on the provided dataset, learning, and improving your techniques in R. 4. This is NOT about criticizing or tearing down your fellow #RStats practitioners! Be supportive and kind to each other! Like other's posts and help promote the #RStats community! 4. Use the hashtag #TidyTuesday on Twitter if you create your own version and would like to share it. 5. Include a picture of the visualisation when you post to Twitter. 6. Include a copy of the code used to create your visualization when you post to Twitter. Comment your code wherever possible to help yourself and others understand your process! -7. Focus on improving your craft, even if you end up with someting simple! Make something quick, but purposeful! +7. Focus on improving your craft, even if you end up with someting simple! 8. Give credit to the original data source whenever possible. ***