-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathvisual2.py
136 lines (104 loc) · 4.02 KB
/
visual2.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
import os
import torch
from torch.autograd import Variable
import torchvision
import torchvision.transforms as transforms
import matplotlib
matplotlib.use('Agg')
import matplotlib.pyplot as plt
import matplotlib.gridspec as gridspec
from model import Discriminator
os.environ["CUDA_VISIBLE_DEVICES"] = "1"
# This function is used to plot a 10 by 10 grid of images scaled between 0 and 1
def plot(samples):
fig = plt.figure(figsize=(10, 10))
gs = gridspec.GridSpec(10, 10)
gs.update(wspace=0.02, hspace=0.02)
for i, sample in enumerate(samples):
ax = plt.subplot(gs[i])
plt.axis('off')
ax.set_xticklabels([])
ax.set_yticklabels([])
ax.set_aspect('equal')
plt.imshow(sample)
return fig
transform_test = transforms.Compose([
transforms.CenterCrop(32),
transforms.ToTensor(),
transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)),
])
batch_size = 100
testset = torchvision.datasets.CIFAR10(root='./', train=False, download=False, transform=transform_test)
testloader = torch.utils.data.DataLoader(testset, batch_size=batch_size, shuffle=False, num_workers=8)
testloader = enumerate(testloader)
# discriminator trained without the generator
model = Discriminator()
checkpoint = torch.load('./checkpoint/discriminator-run-20181025021504/discriminator.model')
model.load_state_dict(checkpoint['state_dict'])
model.cuda()
model.eval()
# discriminator trained with the generator
oldmodel = torch.load('./checkpoint/gan-run-20181025172252/discriminator.model')
state_dict = oldmodel.state_dict()
model2 = Discriminator()
model2.load_state_dict(state_dict)
model2.cuda()
model2.eval()
############## Perturb Real Images ##############
# Grab a sample batch from the test dataset
batch_idx, (X_batch, Y_batch) = testloader.__next__()
X_batch = Variable(X_batch,requires_grad=True).cuda()
# max feat plot for discriminator without the generator
X = X_batch.mean(dim=0)
X = X.repeat(batch_size,1,1,1)
Y = torch.arange(batch_size).type(torch.int64)
Y = Variable(Y).cuda()
lr = 0.1
weight_decay = 0.001
for i in range(200):
output = model(X)
loss = -output[torch.arange(batch_size).type(torch.int64),torch.arange(batch_size).type(torch.int64)]
gradients = torch.autograd.grad(outputs=loss, inputs=X,
grad_outputs=torch.ones(loss.size()).cuda(),
create_graph=True, retain_graph=False, only_inputs=True)[0]
prediction = output.data.max(1)[1] # first column has actual prob.
accuracy = ( float( prediction.eq(Y.data).sum() ) /float(batch_size))*100.0
print(i,accuracy,-loss)
X = X - lr*gradients.data - weight_decay*X.data*torch.abs(X.data)
X[X>1.0] = 1.0
X[X<-1.0] = -1.0
## save new images
samples = X.data.cpu().numpy()
samples += 1.0
samples /= 2.0
samples = samples.transpose(0,2,3,1)
fig = plot(samples[0:100])
plt.savefig('visualization/discri_max_features_layer2.png', bbox_inches='tight')
plt.close(fig)
# max feat plot for discriminator with the generator
X = X_batch.mean(dim=0)
X = X.repeat(batch_size,1,1,1)
Y = torch.arange(batch_size).type(torch.int64)
Y = Variable(Y).cuda()
lr = 0.1
weight_decay = 0.001
for i in range(200):
output = model2(X)
loss = -output[torch.arange(batch_size).type(torch.int64),torch.arange(batch_size).type(torch.int64)]
gradients = torch.autograd.grad(outputs=loss, inputs=X,
grad_outputs=torch.ones(loss.size()).cuda(),
create_graph=True, retain_graph=False, only_inputs=True)[0]
prediction = output.data.max(1)[1] # first column has actual prob.
accuracy = ( float( prediction.eq(Y.data).sum() ) /float(batch_size))*100.0
print(i,accuracy,-loss)
X = X - lr*gradients.data - weight_decay*X.data*torch.abs(X.data)
X[X>1.0] = 1.0
X[X<-1.0] = -1.0
## save new images
samples = X.data.cpu().numpy()
samples += 1.0
samples /= 2.0
samples = samples.transpose(0,2,3,1)
fig = plot(samples[0:100])
plt.savefig('visualization/gan_max_features_layer2.png', bbox_inches='tight')
plt.close(fig)