-
Notifications
You must be signed in to change notification settings - Fork 129
/
Copy path1102. Invert a Binary Tree.cpp
50 lines (50 loc) · 1.14 KB
/
1102. Invert a Binary Tree.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
#include <bits/stdc++.h>
using namespace std;
using gg = long long;
const gg MAX = 15;
gg ni;
vector<array<gg, 2>> tree(MAX, {-1, -1});
void inOrder(gg root, gg& n) {
if (root == -1)
return;
inOrder(tree[root][0], n);
cout << root << (++n == ni ? "\n" : " ");
inOrder(tree[root][1], n);
}
void levelOrder(gg root) {
queue<gg> q;
q.push(root);
gg n = 0;
while (not q.empty()) {
auto t = q.front();
q.pop();
cout << t << (++n == ni ? "\n" : " ");
if (tree[t][0] != -1)
q.push(tree[t][0]);
if (tree[t][1] != -1)
q.push(tree[t][1]);
}
}
int main() {
ios::sync_with_stdio(false);
cin.tie(0);
cin >> ni;
string s1, s2;
vector<bool> f(ni);
for (gg i = 0; i < ni; ++i) {
cin >> s1 >> s2;
if (s1 != "-") {
tree[i][1] = stoll(s1);
f[stoll(s1)] = true;
}
if (s2 != "-") {
tree[i][0] = stoll(s2);
f[stoll(s2)] = true;
}
}
gg root = find(f.begin(), f.end(), false) - f.begin();
levelOrder(root);
gg n = 0;
inOrder(root, n);
return 0;
}