-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathfit.rb
180 lines (158 loc) · 5.25 KB
/
fit.rb
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
require 'compsci/fit'
require 'minitest/autorun'
include CompSci
def noise # range: -0.5 to 0.5
rand - 0.5
end
describe Fit do
parallelize_me!
before do
@xs = [1, 2, 5, 10, 20, 50, 100, 200, 500]
end
describe "Fit.sigma" do
it "answers correctly" do
expect(Fit.sigma([1, 2, 3])).must_equal 6
expect(Fit.sigma([1, 2, 3]) { |n| n ** 2 }).must_equal 14
end
end
describe "Fit.error" do
it "calculates r^2" do
expect(Fit.error([[1, 1], [2, 2], [3, 3]]) { |x| x }).must_equal 1.0
expect(Fit.error([[1, 1], [2, 2], [3, 4]]) { |x|
x
}).must_be_close_to 0.785
end
end
# y = a
# Note: Thinking about dropping this.
# I don't know how to test the variance for constantness or any
# alternate measure. A low slope and r2 for linear fit, maybe.
#
describe "Fit.constant" do
it "returns zero variance with truly constant inputs" do
[0, 1, 10, 100, 1000, 9999].each { |a|
y_bar, variance = Fit.constant(@xs, @xs.map { |x| a })
expect(y_bar).must_equal a
expect(variance).must_equal 0
}
end
end
# y = a + b*ln(x)
describe "Fit.logarithmic" do
it "accepts logarithmic data" do
[-9999, -2000, -500, -0.01, 0.01, 500, 2000, 9999].each { |a|
[-9999, -2000, -500, -0.01, 0.01, 500, 2000, 9999].each { |b|
ary = Fit.logarithmic(@xs, @xs.map { |x| a + b * Math.log(x) })
expect(ary[0]).must_be_close_to a
expect(ary[1]).must_be_close_to b
expect(ary[2]).must_equal 1.0
}
}
end
end
# y = a + bx
describe "Fit.linear" do
it "accepts linear data" do
[-9999, -2000, -500, -0.01, 0.01, 500, 2000, 9999].each { |a|
[-9999, -2000, -500, -0.01, 0.01, 500, 2000, 9999].each { |b|
ary = Fit.linear(@xs, @xs.map { |x| a + b * x })
expect(ary[0]).must_be_close_to a
expect(ary[1]).must_be_close_to b
expect(ary[2]).must_equal 1.0
}
}
end
it "accepts constant data" do
[0, 1, 10, 100, 1000, 9999].each { |a|
ary = Fit.linear(@xs, @xs.map { |x| a })
expect(ary[0]).must_equal a
expect(ary[1]).must_equal 0
expect(ary[2].nan?).must_equal true
}
end
# note, this test can possibly fail depending on the uniformity of
# rand's output for our sample
#
it "accepts noisy constant data" do
r2s = []
[0, 1, 10, 100, 1000, 9999].each { |a|
ary = Fit.linear(@xs, @xs.map { |x| a + noise() })
expect(ary[0]).must_be_close_to a, 0.4
expect(ary[1]).must_be_close_to 0, 0.05
r2s << ary[2]
}
mean_r2 = Fit.sigma(r2s) / r2s.size
expect(mean_r2).must_be_close_to 0.15, 0.15
end
it "rejects x^2" do
xs = Array.new(99) { |i| i }
_a, _b, r2 = Fit.linear(xs, xs.map { |x| x**2 })
expect(r2).must_be :<, 0.99
end
it "rejects x^3" do
xs = Array.new(99) { |i| i }
_a, _b, r2 = Fit.linear(xs, xs.map { |x| x**3 })
expect(r2).must_be :<, 0.99
end
end
# y = ae^(bx)
describe "Fit.exponential" do
it "accepts exponential data" do
[0.001, 7.5, 500, 1000, 5000, 9999].each { |a|
[-1.4, -1.1, -0.1, 0.01, 0.5, 0.75].each { |b|
ary = Fit.exponential(@xs, @xs.map { |x| a * Math::E**(b * x) })
expect(ary[0]).must_be_close_to a
expect(ary[1]).must_be_close_to b
expect(ary[2]).must_equal 1.0
}
}
end
end
# y = ax^b
describe "Fit.power" do
it "accepts power data" do
[0.01, 7.5, 500, 1000, 5000, 9999].each { |a|
[-114, -100, -10, -0.5, -0.1, 0.1, 0.75, 10, 50, 60].each { |b|
# [ -100, -10, -0.5, -0.1, 0.1, 0.75, 10, 50, 60].each { |b|
# note: on Ruby 2.4.x and older, b == -114 throws
# warning: Bignum out of Float range
# also: TruffleRuby as of Jan '22: ary[2] is NaN rather than 1.0
ary = Fit.power(@xs, @xs.map { |x| a * x**b })
expect(ary[0]).must_be_close_to a
expect(ary[1]).must_be_close_to b
expect(ary[2]).must_equal 1.0
}
}
end
end
describe "Fit.predict" do
before do
@a, @b, @x = 1, 2, 3
end
it "accepts a few different models" do
[:constant, :logarithmic, :linear, :exponential, :power].each { |model|
expect(Fit.predict(model, @a, @b, @x)).must_be_kind_of(Numeric)
}
expect { Fit.predict(:invalid, @a, @b, @x) }.must_raise RuntimeError
end
it "predicts constant relationships" do
expect(Fit.predict(:constant, @a, @b, @x)).must_equal @a
expect(Fit.predict(:constant, @a, @x, @b)).must_equal @a
expect(Fit.predict(:constant, @x, @a, @b)).must_equal @x
end
it "predicts logarithmic relationships" do
expect(Fit.predict(:logarithmic, @a, @b, @x)
).must_equal @a + @b * Math.log(@x)
end
it "predicts linear relationships" do
expect(Fit.predict(:linear, @a, @b, @x)).must_equal @a + @b * @x
end
it "predicts exponential relationships" do
expect(Fit.predict(:exponential, @a, @b, @x)
).must_equal @a * Math::E ** (@b * @x)
end
it "predicts power relationships" do
expect(Fit.predict(:power, @a, @b, @x)).must_equal @a * @x ** @b
end
end
end