-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtune.py
142 lines (118 loc) · 4.39 KB
/
tune.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
import argparse
import datetime as dt
import json
import logging
import random
from distutils.util import strtobool
import matplotlib.pyplot as plt
import numpy as np
import optuna
import pandas as pd
from scipy.sparse import csr_matrix
from sklearn.model_selection import StratifiedKFold
from utils import ModelSelector, load_datasets, load_target, train_and_predict
def str_func(x):
return "bow" if "bow" in x else x
plt.rcParams["font.size"] = 5
parser = argparse.ArgumentParser()
parser.add_argument("-c", "--config", default="./configs/default.json")
parser.add_argument("-n", "--n_trials", default=100, type=int)
options = parser.parse_args()
with open(options.config, "r") as f:
config = json.load(f)
logger = logging.getLogger(__name__)
logger.setLevel(logging.INFO)
handler1 = logging.StreamHandler()
handler1.setLevel(logging.INFO)
logger.addHandler(handler1)
now = dt.datetime.now()
handler2 = logging.FileHandler(filename="./logs/tune_{0:%Y%m%d%H%M%S}.log".format(now))
logger.addHandler(handler2)
IDNAME = config["ID_name"] if "ID_NAME" in config else "id"
RANDOM_STATE = 0
random.seed(RANDOM_STATE)
np.random.seed(RANDOM_STATE)
features = config["features"]
logger.info(features)
target_name = config["target_name"]
logger.info("load datasets")
X_train_all, X_test, dims = load_datasets(features)
indexes = [
f"{str_func(k)}{i}" if v > 1 else str_func(k)
for k, v in dims.items()
for i in range(v)
]
y_train_all = load_target(target_name)
logger.info(X_train_all.shape)
def param_grids_to_params(trial: optuna.Trial, param_grids: dict):
params = {}
for k, v in param_grids.items():
# set optimizing target parameters
if isinstance(v, list):
if len(v) > 2:
params[k] = trial.suggest_categorical(k, v)
elif all([isinstance(s, bool) for s in v]):
b = strtobool(trial.suggest_categorical(k, [str(p) for p in v]))
params[k] = True if b == 1 else False
elif type(v[0]) == int:
params[k] = trial.suggest_int(k, v[0], v[1])
elif type(v[0]) == float:
params[k] = trial.suggest_uniform(k, v[0], v[1])
else:
params[k] = trial.suggest_categorical(k, v)
# set static parameters
else:
params[k] = v
return params
def objective(trial: optuna.Trial):
fmeasures = []
ms = ModelSelector(config["model_name"])
_, param_grids = ms.get_model()
params = param_grids_to_params(trial, param_grids)
kf = StratifiedKFold(n_splits=10, shuffle=True, random_state=RANDOM_STATE)
for train_idx, val_idx in kf.split(X_train_all, y_train_all):
X_train, X_valid = X_train_all[train_idx, :], X_train_all[val_idx, :]
y_train, y_valid = y_train_all[train_idx], y_train_all[val_idx]
f1, _, _ = train_and_predict(
csr_matrix(X_train),
csr_matrix(X_valid),
y_train,
y_valid,
params,
config["model_name"],
)
fmeasures.append(f1)
f1score = sum(fmeasures) / len(fmeasures)
return f1score
study = optuna.create_study(direction="maximize")
logger.info("tuning model...")
study.optimize(objective, n_trials=options.n_trials)
params = study.best_trial.params
logger.info(f"number of finished trials: {str(len(study.trials))}")
logger.info(f"best trial: {str(params)}")
best_score = study.best_value
logger.info(f"best score: {str(best_score)}")
json_name = "tuned_{0:%Y%m%d%H%M%S}_{1}.json".format(now, config["model_name"])
logger.info(f"save best params to `configs/{json_name}`")
with open(f"./configs/{json_name}", "w") as f:
for k, v in params.items():
config["params"][k] = v
json.dump(config, f)
_, y_pred, true_model = train_and_predict(
X_train_all, X_test, y_train_all, params=params, model_name=config["model_name"]
)
logger.info("save predicted result")
sub = pd.DataFrame()
sub[target_name] = y_pred
sub.to_csv(
"./data/output/tune_{0:%Y%m%d%H%M%S}_{1}.csv".format(now, best_score), index=False
)
if config["model_name"] in ["rf", "xgb", "lgbm"]:
importance = pd.DataFrame(
true_model.feature_importances_, index=indexes, columns=["importance"]
)
importance = importance.sort_values("importance", ascending=False)
importance.head(50).plot.bar()
plt.savefig("logs/tune_{0:%Y%m%d%H%M%S}_feature_importance.png".format(now))
plt.close()
logger.info(importance)