-
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathhubconf.py
71 lines (44 loc) · 1.58 KB
/
hubconf.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
"""
Load Model:
model = torch.hub.load('risangbaskoro/icvlpr', 'lprnet')
Decoder API:
decoder = torch.hub.load('risangbaskoro/icvlpr', 'decoder', decoder='greedy')
decoder = torch.hub.load('risangbaskoro/icvlpr', 'decoder', decoder='beam', beam_width=5)
Converter API:
converter = torch.hub.load('risangbaskoro/icvlpr', 'converter')
"""
import torch
from model import LPRNet, SpatialTransformerLayer, LocNet
dependencies = ["torch"]
def lprnet(pretrained: bool = True):
locnet = LocNet()
stn = SpatialTransformerLayer(localization=locnet, align_corners=True)
model = LPRNet(stn=stn)
if pretrained:
url = "https://data.risangbaskoro.com/icvlp/models/epoch_811.pth"
model.load_state_dict(
torch.hub.load_state_dict_from_url(
url, map_location="cpu", progress=True)
)
return model
def dataset(*args, **kwargs):
from dataset import ICVLPDataset
return ICVLPDataset(*args, **kwargs)
def decoder(decoder: str = "greedy", beam_width: int = 5):
assert decoder in [
"greedy",
"beam",
], f"Decoder must either 'greedy' or 'beam'. Got {decoder}"
if decoder == "greedy":
from decoder import GreedyCTCDecoder
ret = GreedyCTCDecoder()
elif decoder == "beam":
from decoder import BeamCTCDecoder
ret = BeamCTCDecoder(beam_width=beam_width)
return ret
def converter():
from utils import Converter
return Converter()
def rln(blank=0):
from metrics import LetterNumberRecognitionRate
return LetterNumberRecognitionRate(blank=blank)