-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmodels_nir2.py
102 lines (85 loc) · 3.74 KB
/
models_nir2.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
# -*- coding: utf-8 -*-
from torch import nn
import torch as t
import torchvision
import torch.nn.functional as F
from torchsummary import summary
class BlockDW(nn.Module):
def __init__(self, chl_in, chl_out, kernel):
super(BlockDW, self).__init__()
self.convDW = nn.Conv2d(chl_in, chl_in, kernel_size=kernel, stride=1, padding=kernel//2, groups=chl_in, bias=False)
self.convPW = nn.Conv2d(chl_in, chl_out, kernel_size=1, stride=1, padding=0, bias=True)
self.bn = nn.BatchNorm2d(chl_out)
self.relu = nn.ReLU()
def forward(self, x):
out = self.relu(self.convDW(x))
out = self.relu(self.bn(self.convPW(out)))
return out
class BlockDW2(nn.Module):
def __init__(self, chl_in, chl_out, kernel):
super(BlockDW2, self).__init__()
self.convDW1 = nn.Conv2d(chl_in, chl_out, kernel_size=5, stride=1, padding=5//2, groups=1, bias=False)
self.convPW1 = nn.Conv2d(chl_out, chl_out, kernel_size=1, stride=1, padding=0, bias=False)
self.convDW2 = nn.Conv2d(chl_out, chl_out, kernel_size=5, stride=1, padding=5 // 2, groups=chl_out, bias=False)
self.convPW2 = nn.Conv2d(chl_out, chl_out, kernel_size=1, stride=1, padding=0, bias=True)
self.bn = nn.BatchNorm2d(chl_out)
self.relu = nn.ReLU()
def forward(self, x):
out = self.relu(self.convDW1(x))
out = self.relu(self.convPW1(out))
out = self.relu(self.convDW2(out))
out = self.relu(self.bn(self.convPW2(out)))
return out
class BlockDN(nn.Module):
def __init__(self, chl_in, chl_out, kernel, expansion):
super(BlockDN, self).__init__()
self.convPW1 = nn.Conv2d(chl_in, chl_in//expansion, kernel_size=1, stride=1)
self.convDW = nn.Conv2d(chl_in//expansion, chl_in//expansion, kernel, stride=1, padding=kernel//2, groups=chl_in//expansion)
self.convPW2 = nn.Conv2d(chl_in//expansion, chl_out, 1, stride=1, bias=True)
self.bn = nn.BatchNorm2d(chl_out)
self.relu = nn.ReLU()
def forward(self, x):
out = self.relu(self.convPW1(x))
out = self.relu(self.convDW(out))
out = self.relu(self.bn(self.convPW2(out)))
return out
class BlockOut(nn.Module):
def __init__(self, chl_in, chl_out, kernel, expansion):
super(BlockOut, self).__init__()
self.convPW1 = nn.Conv2d(chl_in, chl_in//expansion, kernel_size=1, stride=1)
self.convDW = nn.Conv2d(chl_in//expansion, chl_in//expansion, kernel_size=kernel, stride=1, padding=kernel//2, groups=chl_in//expansion)
self.convPW2 = nn.Conv2d(chl_in//expansion, chl_out, 1, 1)
self.relu = nn.ReLU()
self.relu2 = nn.Tanh()
def forward(self, x):
out = self.relu(self.convPW1(x))
out = self.relu(self.convDW(out))
out = self.relu2(self.convPW2(out))
return out
class NewIRNet3(nn.Module):
def __init__(self):
super(NewIRNet3, self).__init__()
self.chl_mid = 32
self.convDW9x9 = BlockDW2(3, self.chl_mid, 9)
self.dn2 = BlockDN(self.chl_mid, self.chl_mid, 3, 4)
self.dn3 = BlockDN(self.chl_mid*2, self.chl_mid, 3, 4)
self.blockOut4 = BlockOut(self.chl_mid*3, 3, 9, 2)
def forward(self, x):
dw_out = self.convDW9x9(x)
dn2_out = self.dn2(dw_out)
out = t.cat([dw_out, dn2_out], 1)
dn3_out = self.dn3(out)
out = t.cat([dn3_out, dn2_out, dw_out], 1)
out = self.blockOut4(out)
out = out + x
return out
def test():
device = 'cuda'
inputs = t.rand(2, 3, 96, 64).to(device)
net = NewIRNet3().to(device)
outputs = net(inputs)
print(outputs.shape)
t.save(net, 'd:/nir2_test.pth')
summary(net, input_size=(3, 96, 64), device=device)
if __name__=="__main__":
test()