-
Notifications
You must be signed in to change notification settings - Fork 25
/
Copy pathchatbot_dnn.py
113 lines (84 loc) · 2.94 KB
/
chatbot_dnn.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
# please remove file data.pickle first before you train
import nltk
from nltk.stem.lancaster import LancasterStemmer
stemmer = LancasterStemmer()
import numpy
import tensorflow as tf
from tensorflow.keras import layers, models
import random
import json
import pickle
with open("chatbot_intents.json") as file:
data = json.load(file)
try:
with open("chatbot_data.pickle", "rb") as f:
words, labels, training, output = pickle.load(f)
except:
words = []
labels = []
docs_x = []
docs_y = []
for intent in data["intents"]:
for pattern in intent["patterns"]:
wrds = nltk.word_tokenize(pattern)
words.extend(wrds)
docs_x.append(wrds)
docs_y.append(intent["tag"])
if intent["tag"] not in labels:
labels.append(intent["tag"])
words = [stemmer.stem(w.lower()) for w in words if w != "?"]
words = sorted(list(set(words)))
labels = sorted(labels)
training = []
output = []
out_empty = [0 for _ in range(len(labels))]
for x, doc in enumerate(docs_x):
bag = []
wrds = [stemmer.stem(w.lower()) for w in doc]
for w in words:
if w in wrds:
bag.append(1)
else:
bag.append(0)
output_row = out_empty[:]
output_row[labels.index(docs_y[x])] = 1
training.append(bag)
output.append(output_row)
training = numpy.array(training)
output = numpy.array(output)
with open("chatbot_data.pickle", "wb") as f:
pickle.dump((words, labels, training, output), f)
print(training.shape)
# Build Model
model = models.Sequential()
model.add(layers.Dense(32, activation='relu', input_shape=training[0].shape))
model.add(layers.Dense(32, activation='relu'))
model.add(layers.Dense(len(output[0]), activation='softmax'))
model.summary()
model.compile(optimizer='Adam',loss='categorical_crossentropy', metrics=['accuracy'])
# Train Model
model.fit(training, output, epochs=200, batch_size=8, verbose=1)
model.save('models/chatbot_dnn.h5')
def bag_of_words(s, words):
bag = [0 for _ in range(len(words))]
s_words = nltk.word_tokenize(s)
s_words = [stemmer.stem(word.lower()) for word in s_words]
for se in s_words:
for i, w in enumerate(words):
if w == se:
bag[i] = 1
return numpy.array(bag)
def chat():
print("Start talking with the bot (type quit to stop)!")
while True:
inp = input("You: ")
if inp.lower() == "quit":
break
results = model.predict(numpy.array([bag_of_words(inp, words)]))
results_index = numpy.argmax(results)
tag = labels[results_index]
for tg in data["intents"]:
if tg['tag'] == tag:
responses = tg['responses']
print(random.choice(responses))
chat()