-
Notifications
You must be signed in to change notification settings - Fork 2
/
embed.v
873 lines (786 loc) · 27.2 KB
/
embed.v
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
(* Copyright (c) 2014, Robert Dockins *)
Require Import Setoid.
Require Import basics.
Require Import preord.
Require Import categories.
Require Import sets.
Require Import finsets.
Require Import esets.
Require Import effective.
Require Import directed.
Require Import plotkin.
Require Import approx_rels.
Require Import profinite.
(** * Basis embeddings and EP-pairs
Here we define the category of embeddings over PLT. These are used
to construct the solutions to recursive domain equations. Here
we show that the category of basis embeddings is equivalant to
the more usual category of embedding-projection pairs. Basis
embeddings are considerably more convenient to work with than EP-pairs, so
we prefer them for building bilimits and proving functors continuous.
Basis embeddings form a category with the effective Plotkin orders
as objects. To avoid notational confusion, we use the symbol ⇀
to refer to embeddings, reserving → for the homs of PLT.
*)
Record embedding (hf:bool) (A B:PLT.ob hf) :=
Embedding
{ embed_map :> A -> B
; embed_mono : forall a a', a ≤ a' -> embed_map a ≤ embed_map a'
; embed_reflects : forall a a', embed_map a ≤ embed_map a' -> a ≤ a'
; embed_directed0 : forall y,
if hf then True else exists x, embed_map x ≤ y
; embed_directed2 : forall y a b,
embed_map a ≤ y ->
embed_map b ≤ y ->
exists c, embed_map c ≤ y /\ a ≤ c /\ b ≤ c
}.
Arguments embed_map [hf] [A] [B] e a.
Arguments embed_mono [hf] [A] [B] e _ _ _.
Arguments embed_reflects [hf] [A] [B] e _ _ _.
Arguments embed_directed0 [hf] [A] [B] e _.
Arguments embed_directed2 [hf] [A] [B] e _ _ _ _ _.
Program Definition embed_ident (hf:bool) (A:PLT.ob hf) : embedding hf A A :=
Embedding hf A A (fun x => x) _ _ _ _.
Solve Obligations with (simpl; intros; auto).
Next Obligation.
intros. destruct hf; auto. exists y; auto.
Qed.
Next Obligation.
intros. exists y. intuition.
Qed.
Program Definition embed_compose (hf:bool) A B C
(g:embedding hf B C) (f:embedding hf A B) : embedding hf A C :=
Embedding hf A C (fun x => embed_map g (embed_map f x)) _ _ _ _.
Next Obligation.
intros. apply embed_mono. apply embed_mono. auto.
Qed.
Next Obligation.
intros. apply (embed_reflects f). apply (embed_reflects g); auto.
Qed.
Next Obligation.
intros.
generalize (refl_equal hf).
pattern hf at 2. case hf; intros.
- pattern hf at 1. rewrite H. auto.
- pattern hf at 1. rewrite H.
generalize (embed_directed0 g y).
rewrite H at 1.
intros [q ?].
generalize (embed_directed0 f q).
rewrite H at 1.
intros [q' ?].
exists q'.
transitivity (embed_map g q); auto.
apply embed_mono. auto.
Qed.
Next Obligation.
intros.
destruct (embed_directed2 g y (embed_map f a) (embed_map f b)) as [c [?[??]]]; auto.
destruct (embed_directed2 f c a b) as [q [?[??]]]; auto.
exists q. split; auto.
transitivity (embed_map g c); auto.
apply embed_mono; auto.
Qed.
Definition embed_order hf A B (E G:embedding hf A B) :=
forall x, embed_map E x ≤ embed_map G x.
Program Definition embed_order_mixin hf A B : Preord.mixin_of (embedding hf A B) :=
Preord.Mixin (embedding hf A B) (embed_order hf A B) _ _ .
Solve Obligations with (unfold embed_order; intros; eauto).
Canonical Structure embed_ord hf A B :=
Preord.Pack (embedding hf A B) (embed_order_mixin hf A B).
Definition embed_comp_mixin hf :=
(Comp.Mixin _ _ (embed_ident hf) (embed_compose hf)).
Canonical Structure embed_comp hf :=
Comp.Pack (PLT.ob hf) (embedding hf) (embed_comp_mixin hf).
Program Definition embed_func {hf A B} (E:embedding hf A B) : PLT.ord A → PLT.ord B :=
Preord.Hom A B (embed_map E) (embed_mono E).
Coercion embed_func : embedding >-> hom.
Definition embed_eq_mixin hf A B := Preord.ord_eq (embed_ord hf A B).
Lemma embed_cat_axioms hf :
Category.axioms (PLT.ob hf) (embedding hf) (embed_eq_mixin hf) (embed_comp_mixin hf).
Proof.
intros. constructor.
- intros. split; hnf; simpl; intros; auto.
- intros. split; hnf; simpl; intros; auto.
- intros. split; hnf; simpl; intros; auto.
- intros. split; hnf; simpl; intros.
+ transitivity (embed_map f' (embed_map g x)).
* destruct H. apply H.
* apply embed_mono.
destruct H0. apply H0.
+ transitivity (embed_map f' (embed_map g x)).
* apply embed_mono.
destruct H0. apply H1.
* destruct H. apply H1.
Qed.
Definition EMBED hf :=
Category (PLT.ob hf) (embedding hf) _ _ (embed_cat_axioms hf).
Notation "A ⇀ B" := (hom (EMBED _) A B) (at level 70, no associativity).
Add Parametric Morphism hf A B :
(@embed_map hf A B) with signature
(@Preord.ord_op (embed_ord hf A B)) ==>
(@Preord.ord_op A) ==>
(@Preord.ord_op B)
as embed_map_morphism.
Proof.
intros.
transitivity (y x0).
- apply H.
- apply embed_mono; auto.
Qed.
Add Parametric Morphism hf A B :
(@embed_map hf A B) with signature
(@eq_op (CAT_EQ (EMBED hf) A B)) ==>
(@eq_op (Preord_Eq A)) ==>
(@eq_op (Preord_Eq B))
as embed_map_eq_morphism.
Proof.
intros. split; apply embed_map_morphism; auto.
Qed.
Lemma embed_unlift hf (A B:PLT.ob hf) (f g:A ⇀ B) x :
f ≤ g -> f x ≤ g x.
Proof.
intros. apply H; auto.
Qed.
Lemma embed_unlift' hf (A B:PLT.ob hf) (f g:A ⇀ B) x :
f ≈ g -> f x ≈ g x.
Proof.
intros.
destruct H; split; auto.
Qed.
Lemma embed_lift hf (A B:PLT.ob hf) (f g:A ⇀ B) :
(forall x, f x ≤ g x) -> f ≤ g.
Proof.
repeat intro; auto.
Qed.
Lemma embed_lift' hf (A B:PLT.ob hf) (f g:A ⇀ B) :
(forall x, f x ≈ g x) -> f ≈ g.
Proof.
intros; split; hnf; auto.
Qed.
(** The category of embeddings over _partial_ plotkin orders has
an initial object. The category of embeddings over total plotkin
orders, however, does not.
*)
Program Definition embed_initiate X : PLT.empty true ⇀ X :=
Embedding true (PLT.empty true) X (fun x => False_rect _ x) _ _ _ _.
Solve Obligations of embed_initiate with (simpl; intros; trivial; elim a).
Program Definition PPLT_EMBED_initialized_mixin :=
Initialized.Mixin
(PLT.ob true)
(embedding true)
(embed_eq_mixin true)
(PLT.empty true)
embed_initiate
_.
Next Obligation.
repeat intro.
split; intro x; elim x.
Qed.
Canonical Structure PPLT_EMBED_initialized :=
Initialized
(PLT.ob true) (embedding true)
(embed_eq_mixin true)
(embed_comp_mixin true)
(embed_cat_axioms true)
PPLT_EMBED_initialized_mixin.
Section ep_pairs.
Variable hf:bool.
Notation PLT := (PLT.PLT hf).
Record is_ep_pair (X Y:ob PLT) (e:X → Y) (p:Y → X) :=
IsEP
{ pe_ident : p ∘ e ≈ id
; ep_ident : e ∘ p ≤ id
}.
Record ep_pair (X Y:ob PLT) :=
EpPair
{ embed : X → Y
; project : Y → X
; ep_correct : is_ep_pair X Y embed project
}.
Arguments embed [X] [Y] e.
Arguments project [X] [Y] e.
Program Definition ep_id (X:ob PLT) : ep_pair X X :=
EpPair X X id id _.
Next Obligation.
intros. constructor.
rewrite (cat_ident1 _ _ _ id(X)); auto.
rewrite (cat_ident1 _ _ _ id(X)); auto.
Qed.
Program Definition ep_compose (X Y Z:ob PLT) (g:ep_pair Y Z) (f:ep_pair X Y) :=
EpPair X Z (embed g ∘ embed f) (project f ∘ project g) _.
Next Obligation.
intros.
destruct g as [e' p' [??]].
destruct f as [e p [??]]. simpl in *.
constructor.
- rewrite <- (cat_assoc _ _ _ _ _ p).
rewrite (cat_assoc _ _ _ _ _ p').
rewrite pe_ident0.
rewrite (cat_ident2 _ _ _ e). auto.
- rewrite <- (cat_assoc _ _ _ _ _ e').
rewrite (cat_assoc _ _ _ _ _ e).
transitivity (e' ∘ p'); auto.
apply PLT.compose_mono; auto.
transitivity (id ∘ p').
{ apply PLT.compose_mono; auto. }
rewrite (cat_ident2 _ _ _ p').
auto.
Qed.
Lemma ep_pair_embed_eq_proj_eq : forall X Y e e' p p',
is_ep_pair X Y e p ->
is_ep_pair X Y e' p' ->
e ≈ e' -> p ≈ p'.
Proof.
intros.
split.
- transitivity (id ∘ p).
+ rewrite (cat_ident2 _ _ _ p). auto.
+ destruct H0.
transitivity ((p' ∘ e') ∘ p).
{ apply PLT.compose_mono; auto. }
rewrite <- H1.
rewrite <- (cat_assoc _ _ _ _ _ p').
transitivity (p' ∘ id).
{ apply PLT.compose_mono.
destruct H. auto.
auto.
}
rewrite (cat_ident1 _ _ _ p'). auto.
- transitivity (id ∘ p').
{ rewrite (cat_ident2 _ _ _ p'). auto. }
destruct H.
transitivity ((p ∘ e) ∘ p').
{ apply PLT.compose_mono; auto. }
rewrite H1.
rewrite <- (cat_assoc _ _ _ _ _ p).
transitivity (p ∘ id).
{ apply PLT.compose_mono.
destruct H0. auto.
auto.
}
rewrite (cat_ident1 _ _ _ p). auto.
Qed.
Program Definition ep_pair_eq_mixin X Y : Eq.mixin_of (ep_pair X Y) :=
Eq.Mixin _ (fun f g => embed f ≈ embed g) _ _ _.
Solve Obligations of ep_pair_eq_mixin with (simpl; intros; eauto).
Definition ep_pair_comp_mixin : Comp.mixin_of (PLT.ob hf) ep_pair :=
Comp.Mixin _ ep_pair ep_id ep_compose.
Canonical Structure ep_pair_eq X Y := Eq.Pack (ep_pair X Y) (ep_pair_eq_mixin X Y).
Canonical Structure ep_pair_comp := Comp.Pack _ ep_pair ep_pair_comp_mixin.
Lemma ep_cat_axioms :
Category.axioms _ ep_pair ep_pair_eq_mixin ep_pair_comp_mixin.
Proof.
constructor; simpl; intros.
- red. simpl. apply (cat_ident1 _ _ _ (embed f)).
- red. simpl. apply (cat_ident2 _ _ _ (embed f)).
- red. simpl. apply (cat_assoc _ _ _ _ _ (embed f)).
- red. simpl. apply (cat_respects _ _ _ _ _ _ _ _ H H0).
Qed.
Canonical Structure PLT_EP :=
Category (PLT.ob hf) ep_pair ep_pair_eq_mixin ep_pair_comp_mixin ep_cat_axioms.
Definition find_inhabitant' : forall A (P:eset A) (H:einhabited P),
{ a:A | a ∈ P }.
Proof.
intros. destruct (find_inhabitant A P H).
exists x.
destruct s as [n [??]].
exists n. rewrite H0. auto.
Qed.
Definition choose' A P H := proj1_sig (find_inhabitant' A P H).
Section ep_pair_embed_func.
Variables X Y:ob PLT.
Variable ep : ep_pair X Y.
Let e := embed ep.
Let p := project ep.
Let Hep := ep_correct X Y ep.
Section embed_func.
Variable x:X.
Lemma ep_semidec : forall y, semidec ((x,y) ∈ PLT.hom_rel e /\ (y,x) ∈ PLT.hom_rel p).
Proof.
intro.
apply semidec_conj.
- apply semidec_iff with (y ∈ erel_image (PLT.ord X) (PLT.ord Y) (PLT.dec X)
(PLT.hom_rel e) x).
+ intros. apply erel_image_elem.
+ apply semidec_in. apply PLT.dec.
- apply semidec_iff with (y ∈ erel_inv_image (PLT.ord Y) (PLT.ord X) (PLT.dec X)
(PLT.hom_rel p) x).
+ intros. apply erel_inv_image_elem.
+ apply semidec_in. apply PLT.dec.
Qed.
Definition embed_image :=
esubset (fun y => (x,y) ∈ PLT.hom_rel e /\ (y,x) ∈ PLT.hom_rel p)
ep_semidec
(eff_enum (PLT.ord Y) (PLT.effective Y)).
Lemma embed_image_inhabited : einhabited embed_image.
Proof.
apply member_inhabited.
generalize (pe_ident _ _ _ _ Hep).
intros.
assert ((x,x) ∈ PLT.hom_rel (p ∘ e)).
{ apply H. apply ident_elem. auto. }
apply PLT.compose_hom_rel in H0.
destruct H0 as [y [??]].
exists y. unfold embed_image.
apply esubset_elem.
{ intros. destruct H3; split.
apply member_eq with (x,a); auto.
destruct H2; split; split; auto.
apply member_eq with (a,x); auto.
destruct H2; split; split; auto.
}
repeat split; auto.
apply eff_complete.
Qed.
End embed_func.
Program Definition ep_embed : Preord.hom (PLT.ord X) (PLT.ord Y) :=
Preord.Hom X Y
(fun x => choose' (PLT.ord Y) (embed_image x) (embed_image_inhabited x)) _.
Next Obligation.
intros.
unfold choose'.
destruct (find_inhabitant' (PLT.ord Y) (embed_image a) (embed_image_inhabited a))
as [y ?]. simpl.
destruct (find_inhabitant' (PLT.ord Y) (embed_image b) (embed_image_inhabited b))
as [y' ?]. simpl.
unfold embed_image in *.
apply esubset_elem in m.
apply esubset_elem in m0.
- destruct m as [_ [??]].
destruct m0 as [_ [??]].
destruct Hep.
cut ((y',y) ∈ PLT.hom_rel id).
{ intros. simpl in H4.
apply ident_elem in H4. auto.
}
apply ep_ident0.
simpl.
apply PLT.compose_hom_rel; auto.
exists a. split; auto.
apply PLT.hom_order with y' b; auto.
- intros. destruct H2; split.
apply member_eq with (b,a0); auto.
destruct H1; split; split; auto.
apply member_eq with (a0,b); auto.
destruct H1; split; split; auto.
- intros. destruct H2; split.
apply member_eq with (a,a0); auto.
destruct H1; split; split; auto.
apply member_eq with (a0,a); auto.
destruct H1; split; split; auto.
Qed.
Lemma embed_func_reflects : forall x x',
ep_embed#x ≤ ep_embed#x' -> x ≤ x'.
Proof.
intros x x'. unfold ep_embed. simpl. unfold choose'.
destruct (find_inhabitant' (PLT.ord Y) (embed_image x) (embed_image_inhabited x))
as [y ?]. simpl.
destruct (find_inhabitant' (PLT.ord Y) (embed_image x') (embed_image_inhabited x'))
as [y' ?]. simpl.
intros.
unfold embed_image in *.
apply esubset_elem in m.
apply esubset_elem in m0.
- destruct m. destruct m0.
destruct Hep.
cut ((x',x) ∈ PLT.hom_rel id).
{ simpl; intros. apply ident_elem in H4. auto. }
apply pe_ident0.
simpl. apply PLT.compose_hom_rel.
exists y'. intuition.
apply PLT.hom_order with y x; auto.
- intros. destruct H2; split.
apply member_eq with (x',a); auto.
destruct H1; split; split; auto.
apply member_eq with (a,x'); auto.
destruct H1; split; split; auto.
- intros. destruct H2; split.
apply member_eq with (x,a); auto.
destruct H1; split; split; auto.
apply member_eq with (a,x); auto.
destruct H1; split; split; auto.
Qed.
Lemma embed_func_directed0 : forall y,
if hf then True else exists x, ep_embed#x ≤ y.
Proof.
intros.
generalize (refl_equal hf).
pattern hf at 2; case hf; intros.
{ pattern hf at 1; rewrite H; auto. }
destruct (PLT.hom_directed _ _ _ p y nil).
- hnf.
pattern hf at 1. rewrite H. auto.
- hnf; intros. apply nil_elem in H0. elim H0.
- destruct H0.
pattern hf at 1. rewrite H.
exists x. apply erel_image_elem in H1.
unfold embed_func; simpl.
unfold choose'.
destruct (find_inhabitant' (PLT.ord Y) (embed_image x) (embed_image_inhabited x))
as [y' ?]. simpl in *.
unfold embed_image in m.
apply esubset_elem in m.
+ destruct m as [_ [??]].
destruct Hep.
cut ((y,y') ∈ PLT.hom_rel id).
{ simpl. intros. apply ident_elem in H4. auto. }
apply ep_ident0.
simpl. apply PLT.compose_hom_rel.
exists x; auto.
+ intros. destruct H4; split.
apply member_eq with (x,a); auto.
destruct H3; split; split; auto.
apply member_eq with (a,x); auto.
destruct H3; split; split; auto.
Qed.
Lemma embed_func_directed2 : forall y, forall a b,
ep_embed#a ≤ y ->
ep_embed#b ≤ y ->
exists c, ep_embed#c ≤ y /\ a ≤ c /\ b ≤ c.
Proof.
intro. intros.
unfold ep_embed in *. simpl in *.
unfold choose' in *.
destruct (find_inhabitant' (PLT.ord Y) (embed_image a) (embed_image_inhabited a))
as [ya ?]. simpl in *.
destruct (find_inhabitant' (PLT.ord Y) (embed_image b) (embed_image_inhabited b))
as [yb ?]. simpl in *.
unfold embed_image in m.
unfold embed_image in m0.
apply esubset_elem in m.
apply esubset_elem in m0.
- destruct m as [_ [??]].
destruct m0 as [_ [??]].
assert ((y,a) ∈ PLT.hom_rel p) by
(apply PLT.hom_order with ya a; auto).
assert ((y,b) ∈ PLT.hom_rel p) by
(apply PLT.hom_order with yb b; auto).
destruct (PLT.hom_directed _ _ _ p y (a::b::nil)%list).
+ apply elem_inh with a. apply cons_elem; auto.
+ hnf; simpl; intros.
apply erel_image_elem.
apply cons_elem in H7. destruct H7.
* apply PLT.hom_order with y a; auto.
* apply cons_elem in H7. destruct H7.
** apply PLT.hom_order with y b; auto.
** apply nil_elem in H7. elim H7.
+ destruct H7.
apply erel_image_elem in H8.
rename x into q.
exists q.
split.
* destruct (find_inhabitant' (PLT.ord Y) (embed_image q) (embed_image_inhabited q))
as [yq ?]. simpl in *.
unfold embed_image in m.
apply esubset_elem in m.
** destruct m as [_ [??]].
destruct Hep.
cut ((y,yq) ∈ PLT.hom_rel id).
{ simpl; intros. apply ident_elem in H11. auto. }
apply ep_ident0.
simpl.
apply PLT.compose_hom_rel.
exists q. split; auto.
** intros. destruct H11. split.
*** apply member_eq with (q,a0); auto.
destruct H10; split; split; auto.
*** apply member_eq with (a0,q); auto.
destruct H10; split; split; auto.
* split; apply H7; auto.
** apply cons_elem; auto.
** apply cons_elem; right.
apply cons_elem; auto.
- intros. destruct H3. split.
+ apply member_eq with (b,a0); auto.
destruct H2; split; split; auto.
+ apply member_eq with (a0,b); auto.
destruct H2; split; split; auto.
- intros. destruct H3. split.
+ apply member_eq with (a,a0); auto.
destruct H2; split; split; auto.
+ apply member_eq with (a0,a); auto.
destruct H2; split; split; auto.
Qed.
Definition ep_embedding : embedding hf X Y :=
Embedding hf X Y
(Preord.map _ _ ep_embed)
(Preord.axiom _ _ ep_embed)
embed_func_reflects
embed_func_directed0
embed_func_directed2.
End ep_pair_embed_func.
Section embed_func_ep_pair.
Variables X Y:ob PLT.
Variable embed : embedding hf X Y.
Definition project_rel :=
esubset_dec (PLT.ord Y × PLT.ord X)%cat_ob
(fun yx => fst yx ≥ embed#(snd yx))
(fun yx => eff_ord_dec Y (PLT.effective Y) (embed#(snd yx)) (fst yx))
(eprod (eff_enum Y (PLT.effective Y)) (eff_enum X (PLT.effective X))).
Lemma project_rel_elem : forall y x,
embed#x ≤ y <-> (y,x) ∈ project_rel.
Proof.
intros. split; intros.
- unfold project_rel.
apply esubset_dec_elem.
+ intros.
change (fst y0) with (π₁#y0)%cat_ops.
change (snd y0) with (π₂#y0)%cat_ops.
rewrite <- H0. auto.
+ split; auto.
apply eprod_elem; split; apply eff_complete; auto.
- unfold project_rel in H.
apply esubset_dec_elem in H.
+ destruct H; auto.
+ intros.
change (fst y0) with (π₁#y0)%cat_ops.
change (snd y0) with (π₂#y0)%cat_ops.
rewrite <- H1. auto.
Qed.
Program Definition project_hom : Y → X :=
PLT.Hom hf Y X project_rel _ _.
Next Obligation.
intros.
apply project_rel_elem in H1.
apply project_rel_elem.
transitivity x; auto.
transitivity (embed#y); auto.
Qed.
Next Obligation.
red. intro y.
apply prove_directed.
- generalize (refl_equal hf). pattern hf at 2. case hf; intros.
+ pattern hf at 1. rewrite H. auto.
+ pattern hf at 1. rewrite H.
generalize (embed_directed0 embed y).
rewrite H at 1.
intros [x ?].
exists x.
apply erel_image_elem.
apply project_rel_elem. auto.
- intros.
apply erel_image_elem in H.
apply erel_image_elem in H0.
apply project_rel_elem in H.
apply project_rel_elem in H0.
destruct (embed_directed2 embed y x y0) as [z [?[??]]]; auto.
exists z; split; auto. split; auto.
apply erel_image_elem.
apply project_rel_elem. auto.
Qed.
Definition embed_rel :=
esubset_dec (PLT.ord X×PLT.ord Y)%cat_ob
(fun xy => embed#(fst xy) ≥ snd xy)
(fun xy => eff_ord_dec Y (PLT.effective Y) (snd xy) (embed#(fst xy)))
(eprod (eff_enum X (PLT.effective X)) (eff_enum Y (PLT.effective Y))).
Lemma embed_rel_elem : forall y x,
embed#x ≥ y <-> (x,y) ∈ embed_rel.
Proof.
intros; split; intros.
- unfold embed_rel.
apply esubset_dec_elem.
+ intros.
change (fst y0) with (π₁#y0)%cat_ops.
change (snd y0) with (π₂#y0)%cat_ops.
rewrite <- H0. auto.
+ split; auto.
apply eprod_elem; split; apply eff_complete; auto.
- unfold embed_rel in H.
apply esubset_dec_elem in H.
+ destruct H; auto.
+ intros.
change (fst y0) with (π₁#y0)%cat_ops.
change (snd y0) with (π₂#y0)%cat_ops.
rewrite <- H1. auto.
Qed.
Program Definition embed_hom : X → Y :=
PLT.Hom hf X Y embed_rel _ _.
Next Obligation.
intros.
apply embed_rel_elem in H1.
apply embed_rel_elem.
transitivity y; auto.
transitivity (embed#x); auto.
Qed.
Next Obligation.
hnf. simpl; intros.
hnf. simpl; intros.
exists (embed#(x:X)).
split.
- hnf; simpl; intros.
apply H in H0.
apply erel_image_elem in H0.
apply embed_rel_elem in H0. auto.
- apply erel_image_elem.
apply embed_rel_elem.
auto.
Qed.
Lemma embed_func_is_ep_pair : is_ep_pair X Y embed_hom project_hom.
Proof.
constructor.
- split.
+ hnf; simpl; intros.
destruct a as [x x'].
apply PLT.compose_hom_rel in H.
apply ident_elem.
destruct H as [y [??]].
apply embed_rel_elem in H.
apply project_rel_elem in H0.
apply (embed_reflects embed).
transitivity y; auto.
+ hnf; simpl; intros.
destruct a as [x x'].
apply ident_elem in H.
apply PLT.compose_hom_rel.
exists (embed#(x:X)).
split.
apply embed_rel_elem. auto.
apply project_rel_elem. auto.
- hnf; simpl; intros.
destruct a as [y y'].
apply PLT.compose_hom_rel in H.
apply ident_elem.
destruct H as [x [??]].
apply project_rel_elem in H.
apply embed_rel_elem in H0.
transitivity (embed#x); auto.
Qed.
Definition embed_ep_pair :=
EpPair X Y embed_hom project_hom embed_func_is_ep_pair.
End embed_func_ep_pair.
Arguments ep_embedding [X] [Y] ep.
Arguments embed_ep_pair [X] [Y] _.
Lemma embed_ep_roundtrip1 : forall X Y (ep:ep_pair X Y),
embed_ep_pair (ep_embedding ep) ≈ ep.
Proof.
intros. split; hnf; simpl; intros.
- destruct a.
apply embed_rel_elem in H.
simpl in H.
unfold choose' in H.
match goal with [ _ : context[find_inhabitant' ?A ?X ?Y] |- _ ] =>
destruct (find_inhabitant' A X Y); simpl in *
end.
unfold embed_image in m.
apply esubset_elem in m.
+ destruct m as [?[??]].
apply PLT.hom_order with c x; auto.
+ intros.
destruct H2. split.
* apply member_eq with (c,a); auto.
destruct H1; split; split; auto.
* apply member_eq with (a,c); auto.
destruct H1; split; split; auto.
- destruct a.
apply embed_rel_elem.
simpl. unfold choose'.
match goal with [ |- context[find_inhabitant' ?A ?X ?Y] ] =>
destruct (find_inhabitant' A X Y); simpl in *
end.
unfold embed_image in m.
+ apply esubset_elem in m.
* intuition.
cut ((x,c0) ∈ PLT.hom_rel id).
{ simpl; intros. apply ident_elem in H1. auto. }
generalize (ep_correct X Y ep). intros [??].
apply ep_ident0. simpl.
apply PLT.compose_hom_rel.
eauto.
* intros.
destruct H2. split.
** apply member_eq with (c,a); auto.
destruct H1; split; split; auto.
** apply member_eq with (a,c); auto.
destruct H1; split; split; auto.
Qed.
Lemma embed_ep_roundtrip2 : forall X Y (e : X ⇀ Y),
e ≈ ep_embedding (embed_ep_pair e).
Proof.
intros. split; hnf; simpl; intros.
- unfold choose'.
match goal with [ |- context[find_inhabitant' ?A ?X ?Y] ] =>
destruct (find_inhabitant' A X Y); simpl in *
end.
unfold embed_image in m.
apply esubset_elem in m.
+ intuition.
unfold embed_hom in H1.
simpl in *.
apply embed_rel_elem in H1.
apply project_rel_elem in H2.
simpl in *; auto.
+ intros. destruct H1; split.
* apply member_eq with (x,a); auto.
destruct H0; split; split; auto.
* apply member_eq with (a,x); auto.
destruct H0; split; split; auto.
- unfold choose'.
match goal with [ |- context[find_inhabitant' ?A ?X ?Y] ] =>
destruct (find_inhabitant' A X Y); simpl in *
end.
unfold embed_image in m.
apply esubset_elem in m.
+ intuition.
simpl in *.
apply embed_rel_elem in H1.
auto.
+ intros. destruct H1; split.
* apply member_eq with (x,a); auto.
destruct H0; split; split; auto.
* apply member_eq with (a,x); auto.
destruct H0; split; split; auto.
Qed.
End ep_pairs.
Arguments embed [hf] [X] [Y] e.
Arguments project [hf] [X] [Y] e.
Arguments ep_embedding [hf] [X] [Y] ep.
Arguments embed_ep_pair [hf] [X] [Y] _.
Canonical Structure PLT_EP.
Canonical Structure ep_pair_eq.
Canonical Structure ep_pair_comp.
Program Definition embedForget hf : functor (EMBED hf) (PLT.PLT hf) :=
Functor (EMBED hf) (PLT.PLT hf) (fun X => X) (fun X Y f => embed_hom hf X Y f) _ _ _.
Next Obligation.
intros. split; hnf; simpl; intros.
- destruct a.
apply embed_rel_elem in H0.
apply ident_elem.
rewrite H0.
destruct H. apply H.
- destruct a.
apply embed_rel_elem.
apply ident_elem in H0.
rewrite H0. destruct H. apply H1.
Qed.
Next Obligation.
simpl; intros.
split; hnf; simpl; intros.
- destruct a as [a c].
apply embed_rel_elem in H0.
destruct H.
apply PLT.compose_hom_rel.
exists (g a).
split.
+ apply embed_rel_elem. auto.
+ apply embed_rel_elem.
rewrite H0. apply H.
- destruct a as [a c].
apply PLT.compose_hom_rel in H0.
destruct H0 as [y [??]].
apply embed_rel_elem.
simpl in *.
apply embed_rel_elem in H0.
apply embed_rel_elem in H1.
rewrite H1. rewrite H0.
destruct H. apply H2.
Qed.
Next Obligation.
repeat intro. split; hnf; simpl; intros.
- destruct a as [a b].
apply embed_rel_elem in H0. apply embed_rel_elem.
rewrite H0. destruct H. apply H.
- destruct a as [a b].
apply embed_rel_elem in H0. apply embed_rel_elem.
rewrite H0. destruct H. apply H1.
Qed.