Skip to content

Latest commit

 

History

History
70 lines (50 loc) · 2.13 KB

README.md

File metadata and controls

70 lines (50 loc) · 2.13 KB

🤖 Video Inference Dashboard Example

Roboflow's inference server to analyze video streams. This project extracts insights from video frames at defined intervals and generates informative visualizations and CSV outputs.

📦 Use Case: Smart Inventory Monitoring

Factories & stores can:

  • Save time
  • Count items at intervals, avoiding stockouts.
  • Restock efficiently using data.
  • Enhance operations

📈 Result

This is counting products on shelf, every 5 minutes, categorically and in total.


alt text


alt text

⚙️ Requirements

Make sure you have docker installed. Learn more about building, pulling, and running the Roboflow Inference Docker Image in our documentation.

🔍 Installation

⌗ 1 Start inference server

x86 CPU:

docker run --net=host roboflow/roboflow-inference-server-cpu:latest

NVIDIA GPU

docker run --network=host --gpus=all roboflow/roboflow-inference-server-gpu:latest

⌗ 2 Setup and Run

git clone https://github.com/roboflow/inference-dashboard-example.git
cd inference-dashboard-example
pip install -r requirements.txt
python main.py --dataset_id [YOUR_DATASET_ID] --api_key [YOUR_API_KEY] --video_path [PATH_TO_VIDEO] --interval_minutes [INTERVAL_IN_MINUTES]

"""
--dataset_id: Your dataset name on Roboflow.
--version_id: The version ID for inference (default: 1).
--api_key: Your API key on Roboflow.
--video_path: Path to the video file for analysis.
--interval_minutes: Interval in minutes to extract predictions (default: 1).
"""

🦾 Feedback & Contributions

Feel free to open an issue, submit a PR, or share your feedback. All contributions are welcome!