Skip to content

Latest commit

 

History

History

intro_data_science

Introduction to Data Science

Table of contents

  • Lesson 1
    • Course introduction
    • NumPy
  • Lesson 2:
    • Pandas
    • Exploration of the Titanic dataset
  • Lesson 3:
    • Loss function
    • Gradient descent
    • Linear regression
    • scikit-learn model interface
  • Lesson 4:
    • Categorical features encoding
    • Exploratory data analysis
    • Regression on real data
    • K-folds validation
  • Lesson 5
    • Logistic Regression algorithm
    • Titanic survivors classification
    • Advanced visualization with seaborn
    • Feature engineering
  • Lesson 6
    • Text count vectorization
    • Text TFIDF vectorization
    • Text manipulation using pandas
    • Sentiment analysis on movie reviews
    • Trained model analysis
  • Lesson 7
    • KMeans clustering
    • Principal component analysis
    • t-distributed stochastic neighbor embedding
    • Clutering and dimensionality reduction on text
  • Lesson 8
    • Decision Trees
    • Random Forests
    • Model Ensembles
    • Nearest Neighbors algorithms
    • Locally sensitive hashing
    • Support Vector Machines
    • Neural Networks

References