-
Notifications
You must be signed in to change notification settings - Fork 1
/
TheLemma.tex
322 lines (273 loc) · 16.3 KB
/
TheLemma.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
\documentclass[11pt]{amsart}
\usepackage{amsmath,amscd,amssymb,latexsym, amsfonts}
\usepackage{mathtools}
\theoremstyle{plain}
\newtheorem{iassumption}{Assumption}
\newtheorem{theorem}{Theorem}
\newtheorem{conjecture}[theorem]{Conjecture}
\newtheorem{proposition}[theorem]{Proposition}
\newtheorem*{corollary}{Corollary}
\newtheorem{hypothesis}[theorem]{Hypothesis}
\newtheorem{assumption}[theorem]{Assumption}
\newtheorem{lemma}[theorem]{Lemma}
\newtheorem{question}[theorem]{Question}
\newtheorem{exercise}[theorem]{Exercise}
\newtheorem{statement}[theorem]{Statement}
\newtheorem{example}[theorem]{Example}
\newtheorem*{problem}{Problem}
\newcommand{\MAxxx}[1]{$\clubsuit$\footnote{#1}}
\newcommand{\DRxxx}[1]{$\spadesuit$\footnote{#1}}
\newcommand{\HT}[1]{\hat{\HH}{}^{#1}}
\theoremstyle{definition}
\newtheorem{definition}[theorem]{Definition}
\newtheorem{remark}[theorem]{Remark}
\setlength{\oddsidemargin}{0.2in}
\setlength{\evensidemargin}{0.2in}
\setlength{\textwidth}{6.1in}
\DeclareMathOperator{\Gal}{Gal}
\DeclareMathOperator{\val}{val}
\DeclareMathOperator{\HH}{H}
\DeclareMathOperator{\Ad}{Ad}
\DeclareMathOperator{\Nm}{Nm}
\DeclareMathOperator{\Hom}{Hom}
\DeclareMathOperator{\Spec}{Spec}
\DeclareMathOperator{\Res}{Res}
\DeclareMathOperator{\Fr}{Fr}
\DeclareMathOperator{\Ind}{Ind}
\DeclareMathOperator{\gen}{gen}
\DeclareMathOperator{\Z}{Z}
\DeclareMathOperator{\GL}{GL}
\DeclareMathOperator{\PGL}{PGL}
\DeclareMathOperator{\SL}{SL}
\DeclareMathOperator{\SU}{SU}
\DeclareMathOperator{\PU}{PU}
\DeclareMathOperator{\SO}{SO}
\DeclareMathOperator{\Sp}{Sp}
\newcommand{\st}{\ensuremath{\ \ \ \vert\ }}
\newcommand{\TT}{\mathcal{T}}
\newcommand{\C}{\mathcal{C}}
\newcommand{\CC}{\mathbb{C}}
\newcommand{\CCx}{\mathbb{C}^\times}
\newcommand{\OK}{\mathcal{O}_K}
\newcommand{\OKn}{\mathcal{O}_{K_n}}
\newcommand{\PK}{\mathcal{P}_K}
\newcommand{\PL}{\mathcal{P}_L}
\newcommand{\OL}{\mathcal{O}_L}
\newcommand{\ZZ}{\mathbb{Z}}
\newcommand{\QQ}{\mathbb{Q}}
\newcommand{\Gm}{\mathbb{G}_m}
\newcommand{\Lx}{L^\times}
\newcommand{\T}{\mathbf{T}}
\newcommand{\G}{\mathbf{G}}
\newcommand{\N}{\mathbf{N}}
\newcommand{\W}{\mathbf{W}}
\newcommand{\Galk}{\Gamma}
\newcommand{\hatT}{\hat{T}}
\newcommand{\Treg}{T^{\operatorname{reg}}}
\newcommand{\Threg}{\hatT^{\operatorname{reg}}}
\newcommand{\Tirr}{T^{\operatorname{irr}}}
\newcommand{\Thirr}{\hatT^{\operatorname{irr}}}
\newcommand{\Weil}{\mathcal{W}}
\newcommand{\WD}{\mathcal{W}'}
\newcommand{\Lpack}{\mathcal{L}}
\newcommand{\Pgen}{P_G^{\gen}}
\newcommand{\bmu}{\boldsymbol\mu}
\newcommand{\mugen}{\bmu^{\gen}}
\newcommand{\la}{\langle}
\newcommand{\ra}{\rangle}
\newcommand{\invlim}[1]{\varprojlim_{#1}}
\newcommand{\Normalizer}[2]{\operatorname{N}_{#2}(#1)}
\begin{document}
\title{The Lemma}
Suppose $k$ is a finite field, $\G$ is a connected reductive group over $k$ and $\T$ is a maximal torus in $G$. Let $\N$ be the normalizer of $\T$ and $\W$ the absolute Weyl group $\N / \T$. The absolute Galois group $\Galk = \Gal(\bar{k}/k)$ acts on everything; write $G = \G^\Galk$, $T = \T^\Galk$ and $W = \W^\Galk$. Set $\hatT = \Hom(T, \CC^\times)$. We have that $W$ acts on $T$ and $\hat{T}$; we call an element or character \emph{regular} if it is not fixed by any nontrivial element of $W$ (this condition is sometimes referred to as strongly regular). Write $\Treg$ for the set of regular elements in $T$, $\Threg$ for the set of regular characters, $\Tirr$ for the set of irregular elements and $\Thirr$ for the set of irregular characters. Note that in general neither the regular nor the irregular elements of $T$ or $\hatT$ form a subgroup.
\begin{problem}
Identify the set $Q_{\T}$ of $\alpha \in \hatT$ with the following property:
\begin{itemize}
\item For every $\chi \in \Threg$ there is a $w \in W$ with $\frac{\chi}{w(\chi)} = \alpha$.
\end{itemize}
\end{problem}
\section{Facts}
\begin{proposition} \label{pigeonhole}
Suppose $\#\Threg > (\# W - 1) \cdot \# \Thirr$. Then $Q_{\T} = \{ 1 \}$.
\end{proposition}
\begin{proof}
For $w \in W$, set
$$S_w = \{\chi \in \Threg \st \frac{\chi}{w(\chi)} = \alpha\}.$$
Note that if $S_1$ is nonempty then we get $\alpha = 1$ immediately, so we may assume the contrary. Then by the pigeonhole principle, there is a $w \in W$ with $\# S_w > \# \Thirr$. Pick $\chi \in S_w$; since $\# S_w > \#\Thirr$ there is some $\chi' \in S_w$ with $\frac{\chi}{\chi'}$ regular. We now have
$$\frac{\chi}{w(\chi)} = \alpha = \frac{\chi'}{w(\chi')}$$
and therefore $\frac{\chi}{\chi'}$ is fixed by $w$. Since $\frac{\chi}{\chi'}$ is regular, we must have $w = 1$ and thus
$$\alpha = \frac{\chi}{\chi} = 1.$$
\end{proof}
Recall that Frobenius acts on $X^*(\T)$ via an endomorphism $F = qF_0$, where $F_0$ is an automorphism of finite order. So it makes sense to vary $q$: we fix $F_0$ and consider the tori dual to the $\Galk$-modules with Frobenius acting through $qF_0$.
\begin{corollary}[{c.f. \cite[Lemma 8.4.2]{carter}}]
Consider the family of tori $\T_q$ with the same $F_0$. Then for sufficiently large $q$, $Q_{\T_q} = \{ 1 \}$ (regardless of the $\G$ in which $\T_q$ is embedded).
\end{corollary}
\begin{proof}
We will write $\T$ for a general torus in the family and $r$ for the common dimension. For $w \in W$ with $w \ne 1$ the centralizer $\Z_{\T}(w)$ is a proper $F$-stable subgroup of $\T$, and thus $\dim(\Z_{\T}(w)) \le r - 1$. By \cite[3.3.5]{carter} $\# T$ is a polynomial in $q$ of degree $r$ and $\# \Z_{\T}(w)^\Galk = \# \Z_T(w)$ is a polynomial in $q$ of degree at most $r-1$. Thus the ratio
$$\frac{\# \Treg}{\# \Tirr} = \frac{\# T - \sum_{1 \ne w \in W} \# \Z_T(w)}{\sum_{1 \ne w \in W} \# \Z_T(w)}$$
grows without bound as $q$ does. Applying this result to the dual torus $\hatT$ yields the corollary.
\end{proof}
\begin{proposition} \label{irr-sub}
The set $Q_{\T}$ is a subgroup of $\hatT$, contained within $\Thirr$ and stable under the action of $W$.
\end{proposition}
\begin{proof}
If $\alpha \in \Threg \cap Q_{\T}$ then there is some $w \in W$ with $\frac{\alpha}{w(\alpha)} = \alpha$, so $\alpha = 1$ which is not regular.
We now show that $Q_{\T}$ is a group. Certainly $1 \in Q_{\T}$. Suppose $\alpha, \alpha' \in Q_{\T}$ and $\chi \in \Threg$. Then there are $w, w' \in W$ with
\begin{align*}
\frac{\chi}{w(\chi)} &= \alpha, \\
\frac{w(\chi)}{w'(w(\chi))} &= \alpha'.
\end{align*}
Multiplying the two relations yields $\frac{\chi}{w'w(\chi)} = \alpha\alpha'$, so $\alpha\alpha' \in Q_{\T}$. Since $Q_{\T}$ is finite and contained within $\hatT$ it is thus closed under inversion.
Finally, suppose $\tau \in W$. Given $\chi \in \Threg$ with $\alpha = \frac{\chi}{w(\chi)}$ we have
$$\tau(\alpha) = \frac{\tau(\chi)}{\tau w(\chi)} = \frac{\tau(\chi)}{w' \tau(\chi)}$$
for some $w' \in W$. Since $\tau$ permutes the regular characters we get that $\tau(\alpha) \in Q_{\T}$.
\end{proof}
\begin{proposition} \label{orderdiv}
If $\alpha \in Q_{\T}$ has order $m$ and $\chi \in \Threg$ has order $k$ then $m$ divides $k$.
\end{proposition}
\begin{proof}
There is a $w \in W$ with
$$\frac{\chi}{w(\chi)} = \alpha.$$
Since $w(\chi)$ also has order $k$, raising both sides to the $k$th power yields $\alpha^k = 1$.
\end{proof}
\section{Rank 1 and 2 tori}
Write $k_r$ for the degree $r$ extension of $k$, $\T_r$ for the restriction of scalars torus $\Res_{k_r/k} \Gm$ and $\T_r^s$ for $\{x \in \Res_{k_r/k} \Gm \st \Nm_{k_r/k_s} x = 1\}$.
In rank one there are two tori:
\begin{itemize}
\item $\Gm$
\item $\T_2^1$
\end{itemize}
In rank two there are
\begin{itemize}
\item $\T_1 \times \T_1$
\item $\T_1 \times \T_2^1$
\item $\T_2^1 \times \T_2^1$
\item $\T_2$
\item $\T_3^1$
\item $\T_4^2$
\item $\T_6^3 \cap \T_6^2 \simeq \T_6^3 / \T_2^1$
\end{itemize}
There are two rank 1 semisimple groups over $k$: $\SL_2$ and $\PGL_2$. In both cases, for both the split and anisotropic tori, the Weyl group acts as inversion, so the irregular characters are precisely those of order $1$ or $2$. When $q = 2^k$ neither torus has any nontrivial irregular characters so $Q_{\T} = \{1\}$. When $q = 3$ the split torus has no regular characters and thus $Q_{\T} = \Thirr$ has order $2$. The anisotropic torus has $4$ elements, $2$ regular and $2$ irregular characters. Again $Q_{\T}$ has order $2$ since the Weyl group exchanges the two regular characters and their quotient is the nontrivial irregular character. For $q = 5$ the split torus has the same behavior as the anisotropic torus for $q = 3$: $Q_{\T}$ has order $2$. The anisotropic torus has regular characters of order $3$ and $6$ so $Q_{\T} = \{1\}$ by Proposition \ref{orderdiv}; the same holds for the split torus when $q = 7$. For the anisotropic torus ($q = 7$) and all larger $q$, $Q_{\T}$ is trivial by Proposition \ref{pigeonhole}.
\begin{tabular}{l|l|l}
Group & Torus & Weyl Group Action \\
\hline && \\
$\SL_3,$ & $\T_1 \times \T_1$ & Full $S_3$ action \\
$\PGL_3$ & $\T_2$ & $\ZZ/2$: Galois action \\
& $\T_3^1$ & $\ZZ/3$: Galois action \\
\hline && \\
$\SU_3$ & $\T_6^3 \cap \T_6^2$ & trivial Weyl group \\
& $\T_2$ & $\ZZ/2$: Galois action \\
$\PU_3$ & $\T_6^3 / \T_2^1$ & trivial Weyl group \\
& $\T_2$ & $\ZZ/2$: Galois action \\
\hline && \\
$\SO_5,$ & $\T_1 \times \T_1$ & Full $D_8$ action \\
$\Sp_4$ & $\T_1 \times \T_2^1$ & $\ZZ/2 \times \ZZ/2$: inversion on each component \\
& $\T_4^2$ & $\ZZ/4$: Galois action \\
\hline && \\
$\SO_4$ & $\T_1 \times \T_1$ & $\ZZ / 2 \times \ZZ / 2$: inversion on each component \\
& $\T_1 \times \T_2^1$ & $\ZZ / 2 \times \ZZ / 2$: inversion on each component \\
& $\T_2^1 \times \T_2^1$ & $\ZZ / 2 \times \ZZ / 2$: inversion on each component \\
& $\T_4^2$ & $\ZZ / 2$: subgroup of Galois \\
\hline && \\
$\SL_2 \times \SL_2,$ & $\T_1 \times \T_1$ & $\ZZ / 2 \times \ZZ / 2$: inversion on each component \\
$\SL_2 \times \PGL_2,$ & $\T_1 \times \T_2^1$ & $\ZZ / 2 \times \ZZ / 2$: inversion on each component \\
$\PGL_2 \times \PGL_2$ & $\T_2^1 \times \T_2^1$& $\ZZ / 2 \times \ZZ / 2$: inversion on each component
\end{tabular}
First note that $Q_{\T}$ is automatically trivial when the rational Weyl group is trivial. For the tori with cyclic rational points of order $m$ where the Weyl group induces the Galois action, a character is irregular if and only if it maps into the $q-1$ roots of unity (or $q^2-1$ in the case $\T_4^2 \subset \SO_4$).
\begin{itemize}
\item In $\T_2$, $m=q^2 - 1$ and thus there are $q-1$ irregular characters and $q^2 - q$ regular characters so Proposition \ref{pigeonhole} implies $Q_{\T}$ is trivial.
\item In $\T_3^1$, $m = q^2 + q + 1 = (q - 1)(q + 2) + 3$ so there are $3$ irregular characters if $q \equiv 1 \pmod{3}$ and $1$ otherwise. Again Proposition \ref{pigeonhole} does the job for all $q$.
\item In $\T_4^2$, $m = q^2 + 1 = (q-1)(q+1) + 2 = (q^2 - 1) + 2$ so there are $2$ irregular characters if $q$ is odd and $1$ otherwise (in both the $\SO_4$ and $\SO_5$ cases). Proposition \ref{pigeonhole} works for all $q$.
\end{itemize}
For the tori that decompose as a product of rank 1 tori with a corresponding decomposition of the Weyl group, $Q_{\T}$ will split up analogously. So we get some examples with nontrivial $Q_{\T}$ in the $q=3$ and $q=5$ cases described in the rank 1 discussion.
The only remaining cases are the split tori. Consider $\PGL_3$ first, and let $g$ be a generator of $k^\times$ and $\zeta$ a $(q-1)^{\mathrm{st}}$ root of unity. Characters of the split torus are of the form
$$\chi_{a, b} \colon \begin{pmatrix}
g^x & & \\
& g^y & \\
& & 1 \\
\end{pmatrix}
\mapsto \zeta^{ax + by},$$
where $a$ and $b$ are specified modulo $q-1$. The Weyl group acts as follows:
\begin{align*}
w_{1,2}: \chi_{a,b} &\mapsto \chi_{b, a}, \\
w_{2,3}: \chi_{a,b} &\mapsto \chi_{a,-a-b}, \\
w_{3,1}: \chi_{a,b} &\mapsto \chi_{-a-b,b}, \\
w_{1,2,3}: \chi_{a,b} &\mapsto \chi_{b,-a-b}, \\
w_{1,3,2}: \chi_{a,b} &\mapsto \chi_{-a-b,a}. \\
\end{align*}
A character is irregular if $a=b$ (fixed by $w_{1,2}$) or $a = -2b$ (fixed by $w_{2,3}$) or $b = -2a$ (fixed by $w_{3,1}$). The first two conditions intersect when $a = b = -2b$, which occurs $3$ times if $q \equiv 1 \pmod{3}$ and once otherwise; first and third is similar. The last two conditions intersect when $a = 4a = -2b$, which occurs with the same frequency. In fact, this same set consists of the intersection of all three conditions (and the characters fixed by $w_{1,2,3}$ and $w_{1,3,2}$). So by inclusion-exclusion we have
\vspace{0.2in}
\begin{tabular}{lll}
$3q-9$ irregular characters & $q^2-5q+10$ regular characters & if $q \equiv 1 \pmod{3}$, \\
$3q-5$ irregular characters & $q^2-5q+6$ regular characters & if $q \not\equiv 1 \pmod{3}$.
\end{tabular}
\vspace{0.2in}
Note that the number of regular characters is always a multiple of $6$, which is forced by the fact that the Weyl group acts simply on $\Threg$. For $q = 2, 3$ there are no regular characters, so $Q_{\T} = \Thirr$. Proposition \ref{pigeonhole} is effective when
\begin{align*}
q^2 - 5q + 10 > 5(3q - 9) \Leftrightarrow q \ge 19 & q \equiv 1 \pmod{3} \\
q^2 - 5q + 6 > 5(3q-5) \Leftrightarrow q \ge 23 & q \not\equiv 1\pmod{3}
\end{align*}
so we need to check $q=4,5,7,8,9,11,13,16,17$. Consider $\frac{\chi}{w(\chi)}$ as $w$ ranges over nontrivial Weyl group elements. We get
\begin{align*}
\chi_{a-b,b-a} \\
\chi_{0,2b-a} \\
\chi_{2a-b,0} \\
\chi_{a-b,2b-a} \\
\chi_{2a-b,b-a}
\end{align*}
We're looking for an irregular character $\chi_{c,d}$ that is hit by one of these options for every pair $(a,b)$. Suppose first that $c=d$. If $a-b = c = d = b-a$ then $2a = 2b$ so $(a,b) = (\frac{q-1}{2}, 0)$ or $(0,\frac{q-1}{2})$. In either case $(c, d) = (\frac{q-1}{2}, \frac{q-1}{2})$. If $a - b = 2b - a = \frac{q-1}{2}$ then again $2a = 2b$ so $a = a - b$ so $b = 0$ and $a = \frac{q-1}{2}$. The same analysis from $b - a = 2a - b = \frac{q-1}{2}$ gives $a = 0$ and $b = \frac{q-1}{2}$. None of these give regular $\chi_{a,b}$.
For $c = d \ne \frac{q-1}{2}$ we still have either $a - b = 2b - a \Leftrightarrow 2a = 3b$ and $b = 2c$ or $2a-b = b-a \Leftrightarrow 3a = 2b$ and $a = 2c$. For fixed $c$ the first choice yields two possibilities, as does the second. For $q \ge 4$ there are more than four regular characters, so $\chi_{c,c}$ can't be hit by them all.
For $c = -2d$ we first consider the case $c = 0$ and $d = \frac{q-1}{2}$. This case can be obtained through the second option for $a = 2b + \frac{q-1}{2}$, which is regular unless
$$b \in \{0, \frac{q-1}{2}, \frac{q-1}{8}, \frac{3(q-1)}{8}, \frac{5(q-1)}{8}, \frac{7(q-1)}{8}, \frac{q-1}{5}, \frac{2(q-1)}{5}, \frac{3(q-1)}{5}, \frac{4(q-1)}{5}\}.$$
None of the other options can produce $\chi_{c,d}$ from regular $\chi_{a,b}$. There are $q-1$ choices for $b$, of which some are irregular depending on $b \pmod{40}$.
\begin{tabular}{ll}
$q$ & Number of regular $\chi_{a,b}$ \\
4 & 2 \\
5 & 2 \\
7 & 4 \\
8 & 6 \\
9 & 2 \\
11 & 5 \\
13 & 10 \\
16 & 10 \\
17 & 10
\end{tabular}
In no case can we obtain all regular characters in this form.
Next we consider the case that $c = -2d$ and both are nonzero. If $a-b = -2(b-a)$ then $a=b$ so $\chi_{a,b}$ is not regular. If $a-b = -2(2b-a)$ then $a = 3b$ which is regular unless
$$b \in \{0, \frac{q-1}{2}, \frac{q-1}{7}, \frac{2(q-1)}{7}, \frac{3(q-1)}{7}, \frac{4(q-1)}{7}, \frac{5(q-1)}{7}, \frac{6(q-1)}{7}, \frac{q-1}{5}, \frac{2(q-1)}{5}, \frac{3(q-1)}{5}, \frac{4(q-1)}{5}\}.$$
\begin{tabular}{ll}
$q$ & Number of regular $\chi_{a,b}$ \\
4 & 2 \\
5 & 2 \\
7 & 4 \\
8 & 0 \\
9 & 6 \\
11 & 5 \\
13 & 10 \\
16 & 10 \\
17 & 14
\end{tabular}
If $2a-b = -2(b-a)$ then $b = 0$ and $a \in \{0, \frac{q-1}{2}\}$ so there are no other regular contributions. Again in no case do we obtain all regular characters.
In summary, the split torus in $\PGL_3$ has $Q_{\T} = \{1\}$ for $q > 3$.
I won't go through the full analysis for $\SL_3$ but I wanted to point out that the action of the Weyl group is different on the split torus.
Characters of the split torus are of the form
$$\chi_{a, b} \colon \begin{pmatrix}
g^x & & \\
& g^y & \\
& & g^{-x-y} \\
\end{pmatrix}
\mapsto \zeta^{ax + by},$$
where $a$ and $b$ are specified modulo $q-1$. The Weyl group acts as follows:
\begin{align*}
w_{1,2}: \chi_{a,b} &\mapsto \chi_{b, a}, \\
w_{2,3}: \chi_{a,b} &\mapsto \chi_{a-b,-b}, \\
w_{3,1}: \chi_{a,b} &\mapsto \chi_{-a,b-a}, \\
w_{1,2,3}: \chi_{a,b} &\mapsto \chi_{b-a,-a}, \\
w_{1,3,2}: \chi_{a,b} &\mapsto \chi_{-b,a-b}. \\
\end{align*}
\begin{thebibliography}{9}
\bibitem{carter}
Roger Carter,
\emph{Finite Groups of Lie Type: Conjugacy Classes and Complex Characters}. Wiley \& Sons, Chichester, 1985.
\end{thebibliography}
\end{document}