forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 3
/
functional.py
739 lines (553 loc) · 27.3 KB
/
functional.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
"""Functional interface"""
import torch
from . import _functions
from .modules import utils
from ._functions.padding import ConstantPad2d
from .modules.utils import _single, _pair, _triple
# Convolutions
ConvNd = torch._C._functions.ConvNd
def conv2d(input, weight, bias=None, stride=1, padding=0, dilation=1,
groups=1):
"""Applies a 2D convolution over an input image composed of several input
planes.
See :class:`~torch.nn.Conv2d` for details and output shape.
Args:
input: input tensor (minibatch x in_channels x iH x iW)
weight: filters tensor (out_channels, in_channels/groups, kH, kW)
bias: optional bias tensor (out_channels)
stride: the stride of the convolving kernel. Can be a single number or
a tuple (sh x sw). Default: 1
padding: implicit zero padding on the input. Can be a single number or
a tuple. Default: 0
groups: split input into groups, in_channels should be divisible by
the number of groups
Examples:
>>> # With square kernels and equal stride
>>> filters = autograd.Variable(torch.randn(8,4,3,3))
>>> inputs = autograd.Variable(torch.randn(1,4,5,5))
>>> F.conv2d(inputs, filters, padding=1)
"""
f = ConvNd(_pair(stride), _pair(padding), _pair(dilation), False,
_pair(0), groups, torch.backends.cudnn.benchmark, torch.backends.cudnn.enabled)
return f(input, weight, bias)
def conv1d(input, weight, bias=None, stride=1, padding=0, dilation=1,
groups=1):
"""Applies a 1D convolution over an input signal composed of several input
planes.
See :class:`~torch.nn.Conv1d` for details and output shape.
Args:
input: input tensor of shape (minibatch x in_channels x iW)
weight: filters of shape (out_channels, in_channels, kW)
bias: optional bias of shape (out_channels)
stride: the stride of the convolving kernel, default 1
Examples:
>>> filters = autograd.Variable(torch.randn(33, 16, 3))
>>> inputs = autograd.Variable(torch.randn(20, 16, 50))
>>> F.conv1d(inputs, filters)
"""
f = ConvNd(_single(stride), _single(padding), _single(dilation), False,
_single(0), groups, torch.backends.cudnn.benchmark, torch.backends.cudnn.enabled)
return f(input, weight, bias)
def conv3d(input, weight, bias=None, stride=1, padding=0, dilation=1,
groups=1):
"""Applies a 3D convolution over an input image composed of several input
planes.
See :class:`~torch.nn.Conv3d` for details and output shape.
Args:
input: input tensor of shape (minibatch x in_channels x iT x iH x iW)
weight: filters tensor of shape (out_channels, in_channels, kT, kH, kW)
bias: optional bias tensor of shape (out_channels)
stride: the stride of the convolving kernel. Can be a single number or
a tuple (st x sh x sw). Default: 1
padding: implicit zero padding on the input. Can be a single number or
a tuple. Default: 0
Examples:
>>> filters = autograd.Variable(torch.randn(33, 16, 3, 3, 3))
>>> inputs = autograd.Variable(torch.randn(20, 16, 50, 10, 20))
>>> F.conv3d(inputs, filters)
"""
f = ConvNd(_triple(stride), _triple(padding), _triple(dilation), False,
_triple(0), groups, torch.backends.cudnn.benchmark, torch.backends.cudnn.enabled)
return f(input, weight, bias)
def conv_transpose1d(input, weight, bias=None, stride=1, padding=0,
output_padding=0, groups=1):
f = ConvNd(_single(stride), _single(padding), _single(1), True,
_single(output_padding), groups, torch.backends.cudnn.benchmark, torch.backends.cudnn.enabled)
return f(input, weight, bias)
def conv_transpose2d(input, weight, bias=None, stride=1, padding=0,
output_padding=0, groups=1):
"""Applies a 2D transposed convolution operator over an input image
composed of several input planes, sometimes also called "deconvolution".
See :class:`~torch.nn.ConvTranspose2d` for details and output shape.
Args:
input: input tensor of shape (minibatch x in_channels x iH x iW)
weight: filters of shape (in_channels x out_channels x kH x kW)
bias: optional bias of shape (out_channels)
stride: the stride of the convolving kernel, a single number or a
tuple (sh x sw). Default: 1
padding: implicit zero padding on the input, a single number or a
tuple (padh x padw). Default: 0
groups: split input into groups, in_channels should be divisible by
the number of groups
output_padding: A zero-padding of 0 <= padding < stride that should be
added to the output. Can be a single number or a tuple. Default: 0
"""
f = ConvNd(_pair(stride), _pair(padding), _pair(1), True,
_pair(output_padding), groups, torch.backends.cudnn.benchmark, torch.backends.cudnn.enabled)
return f(input, weight, bias)
def conv_transpose3d(input, weight, bias=None, stride=1, padding=0,
output_padding=0, groups=1):
"""Applies a 3D transposed convolution operator over an input image
composed of several input planes, sometimes also called "deconvolution"
See :class:`~torch.nn.ConvTranspose3d` for details and output shape.
Args:
input: input tensor of shape (minibatch x in_channels x iT x iH x iW)
weight: filters of shape (in_channels x out_channels x kH x kW)
bias: optional bias of shape (out_channels)
stride: the stride of the convolving kernel, a single number or a
tuple (sh x sw). Default: 1
padding: implicit zero padding on the input, a single number or a
tuple (padh x padw). Default: 0
"""
f = ConvNd(_triple(stride), _triple(padding), _triple(1), True,
_triple(output_padding), groups, torch.backends.cudnn.benchmark, torch.backends.cudnn.enabled)
return f(input, weight, bias)
# Pooling
def avg_pool1d(input, kernel_size, stride=None, padding=0,
ceil_mode=False, count_include_pad=True):
r"""Applies a 1D average pooling over an input signal composed of several
input planes.
See :class:`~torch.nn.AvgPool1d` for details and output shape.
Args:
kernel_size: the size of the window
stride: the stride of the window. Default value is :attr:`kernel_size`
padding: implicit zero padding to be added on both sides
ceil_mode: when True, will use `ceil` instead of `floor` to compute the output shape
count_include_pad: when True, will include the zero-padding in the averaging calculation
Example:
>>> # pool of square window of size=3, stride=2
>>> input = Variable(torch.Tensor([[[1,2,3,4,5,6,7]]]))
>>> F.avg_pool1d(input, kernel_size=3, stride=2)
Variable containing:
(0 ,.,.) =
2 4 6
[torch.FloatTensor of size 1x1x3]
"""
if input.dim() != 3:
raise ValueError('expected 3D input (got {} dimensions)'
.format(input.dim()))
kernel_size = _single(kernel_size) + (1,)
stride = _single(stride) + (1,) if stride is not None else kernel_size
padding = _single(padding) + (0,)
f = _functions.thnn.AvgPool2d(kernel_size, stride, padding,
ceil_mode, count_include_pad)
return f(input.unsqueeze(3)).squeeze(3)
def avg_pool2d(input, kernel_size, stride=None, padding=0,
ceil_mode=False, count_include_pad=True):
"""Applies 2D average-pooling operation in kh x kw regions by step size
dh x dw steps. The number of output features is equal to the number of
input planes.
See :class:`~torch.nn.AvgPool2d` for details and output shape.
Args:
input: input tensor (minibatch x in_channels x iH x iW)
kernel_size: size of the pooling region, a single number or a
tuple (kh x kw)
stride: stride of the pooling operation, a single number or a
tuple (sh x sw). Default is equal to kernel size
padding: implicit zero padding on the input, a single number or
a tuple (padh x padw), Default: 0
ceil_mode: operation that defines spatial output shape
count_include_pad: divide by the number of elements inside the
original non-padded image or kh * kw
"""
return _functions.thnn.AvgPool2d(kernel_size, stride, padding,
ceil_mode, count_include_pad)(input)
def avg_pool3d(input, kernel_size, stride=None):
"""Applies 3D average-pooling operation in kt x kh x kw regions by step
size kt x dh x dw steps. The number of output features is equal to the
number of input planes / dt.
"""
return _functions.thnn.AvgPool3d(kernel_size, stride)(input)
# share the same interface
def max_pool1d(input, kernel_size, stride=None, padding=0, dilation=1,
ceil_mode=False, return_indices=False):
return _functions.thnn.MaxPool1d(kernel_size, stride, padding, dilation,
return_indices, ceil_mode)(input)
def max_pool2d(input, kernel_size, stride=None, padding=0, dilation=1,
ceil_mode=False, return_indices=False):
return _functions.thnn.MaxPool2d(kernel_size, stride, padding, dilation,
return_indices, ceil_mode)(input)
def max_pool3d(input, kernel_size, stride=None, padding=0, dilation=1,
ceil_mode=False, return_indices=False):
return _functions.thnn.MaxPool3d(kernel_size, stride, padding, dilation,
return_indices, ceil_mode)(input)
def _unpool_output_size(input, kernel_size, stride, padding, output_size):
input_size = input.size()
default_size = []
for d in range(len(kernel_size)):
default_size.append((input_size[d + 2] - 1) * stride[d] +
kernel_size[d] - 2 * padding[d])
if output_size is None:
return default_size
output_size = list(output_size)
if len(output_size) == len(kernel_size) + 2:
output_size = output_size[2:]
if len(output_size) != len(kernel_size):
raise ValueError("output_size should be a sequence containing "
"{} or {} elements, but it has a length of '{}'"
.format(len(kernel_size), len(kernel_size) + 2,
len(output_size)))
for d in range(len(kernel_size)):
min_size = default_size[d] - stride[d]
max_size = default_size[d] + stride[d]
if not (min_size < output_size[d] < max_size):
raise ValueError(
'invalid output_size "{}" (dim {} must be between {} and {})'
.format(output_size, d, min_size, max_size))
return output_size
def max_unpool1d(input, indices, kernel_size, stride=None, padding=0,
output_size=None):
kernel_size = _single(kernel_size)
stride = _single(stride)
padding = _single(padding)
output_size = _unpool_output_size(input, kernel_size, stride, padding,
output_size)
f = _functions.thnn.MaxUnpool2d(output_size + [1])
return f(input.unsqueeze(3), indices.unsqueeze(3)).squeeze(3)
def max_unpool2d(input, indices, kernel_size, stride=None, padding=0,
output_size=None):
kernel_size = _pair(kernel_size)
stride = _pair(stride)
padding = _pair(padding)
output_size = _unpool_output_size(input, kernel_size, stride, padding,
output_size)
f = _functions.thnn.MaxUnpool2d(output_size)
return f(input, indices)
def max_unpool3d(input, indices, kernel_size, stride=None, padding=0,
output_size=None):
kernel_size = _triple(kernel_size)
stride = _triple(stride)
padding = _triple(padding)
output_size = _unpool_output_size(input, kernel_size, stride, padding,
output_size)
f = _functions.thnn.MaxUnpool3d(output_size, stride, padding)
return f(input, indices)
def lp_pool2d(input, norm_type, kernel_size, stride=None, ceil_mode=False):
kw, kh = utils._pair(kernel_size)
out = avg_pool2d(input.pow(norm_type), kernel_size, stride, 0, ceil_mode)
return out.mul(kw * kh).pow(1. / norm_type)
def adaptive_max_pool1d(input, output_size, return_indices=False):
r"""Applies a 1D adaptive max pooling over an input signal composed of
several input planes.
See :class:`~torch.nn.AdaptiveMaxPool1d` for details and output shape.
Args:
output_size: the target output size (single integer)
return_indices: whether to return pooling indices
"""
return _functions.thnn.AdaptiveMaxPool1d(output_size, return_indices)(input)
def adaptive_max_pool2d(input, output_size, return_indices=False):
r"""Applies a 2D adaptive max pooling over an input signal composed of
several input planes.
See :class:`~torch.nn.AdaptiveMaxPool2d` for details and output shape.
Args:
output_size: the target output size (single integer or double-integer tuple)
return_indices: whether to return pooling indices
"""
return _functions.thnn.AdaptiveMaxPool2d(output_size, return_indices)(input)
def adaptive_avg_pool1d(input, output_size):
r"""Applies a 1D adaptive average pooling over an input signal composed of
several input planes.
See :class:`~torch.nn.AdaptiveAvgPool1d` for details and output shape.
Args:
output_size: the target output size (single integer)
"""
return _functions.thnn.AdaptiveAvgPool1d(output_size)(input)
def adaptive_avg_pool2d(input, output_size):
r"""Applies a 2D adaptive average pooling over an input signal composed of
several input planes.
See :class:`~torch.nn.AdaptiveAvgPool2d` for details and output shape.
Args:
output_size: the target output size (single integer or double-integer tuple)
"""
return _functions.thnn.AdaptiveAvgPool2d(output_size)(input)
# Activation functions
def dropout(input, p=0.5, training=False, inplace=False):
return _functions.dropout.Dropout(p, training, inplace)(input)
def threshold(input, threshold, value, inplace=False):
return _functions.thnn.auto.Threshold(threshold, value, inplace)(input)
def relu(input, inplace=False):
return _functions.thnn.auto.Threshold(0, 0, inplace)(input)
def hardtanh(input, min_val=-1., max_val=1., inplace=False):
return _functions.thnn.auto.Hardtanh(min_val, max_val, inplace)(input)
def relu6(input, inplace=False):
return _functions.thnn.auto.Hardtanh(0, 6, inplace)(input)
def elu(input, alpha=1., inplace=False):
return _functions.thnn.auto.ELU(alpha, inplace)(input)
def leaky_relu(input, negative_slope=1e-2, inplace=False):
return _functions.thnn.auto.LeakyReLU(negative_slope, inplace)(input)
def prelu(input, weight):
return _functions.thnn.PReLU()(input, weight)
def rrelu(input, lower=1. / 8, upper=1. / 3, training=False, inplace=False):
return _functions.thnn.RReLU(lower, upper, training, inplace)(input)
def logsigmoid(input):
return _functions.thnn.LogSigmoid()(input)
def hardshrink(input, lambd=0.5):
return _functions.thnn.auto.Hardshrink(lambd)(input)
def tanhshrink(input):
return input - _functions.thnn.Tanh()(input)
def softsign(input):
return _functions.activation.Softsign()(input)
def softplus(input, beta=1, threshold=20):
return _functions.thnn.auto.Softplus(beta, threshold)(input)
def softmin(input):
return _functions.thnn.Softmin()(input)
def softmax(input):
return _functions.thnn.auto.Softmax()(input)
def softshrink(input, lambd=0.5):
return _functions.thnn.auto.Softshrink(lambd)(input)
def log_softmax(input):
return _functions.thnn.LogSoftmax()(input)
def tanh(input):
return _functions.thnn.Tanh()(input)
def sigmoid(input):
return _functions.thnn.Sigmoid()(input)
# etc.
def linear(input, weight, bias=None):
state = _functions.linear.Linear()
return state(input, weight) if bias is None else state(input, weight, bias)
def batch_norm(input, running_mean, running_var, weight=None, bias=None,
training=False, momentum=0.1, eps=1e-5):
f = torch._C._functions.BatchNorm(running_mean, running_var, training, momentum, eps, torch.backends.cudnn.enabled)
return f(input, weight, bias)
# loss
def nll_loss(input, target, weight=None, size_average=True):
r"""The negative log likelihood loss.
See :class:`~torch.nn.NLLLoss` for details.
Args:
input: :math:`(N, C)` where `C = number of classes`
target: :math:`(N)` where each value is `0 <= targets[i] <= C-1`
weight (Variable, optional): a manual rescaling weight given to each
class. If given, has to be a Variable of size "nclasses"
size_average (bool, optional): By default, the losses are averaged
over observations for each minibatch. However, if the field
sizeAverage is set to False, the losses are instead summed
for each minibatch.
Attributes:
weight: the class-weights given as input to the constructor
Example:
>>> # input is of size nBatch x nClasses = 3 x 5
>>> input = autograd.Variable(torch.randn(3, 5))
>>> # each element in target has to have 0 <= value < nclasses
>>> target = autograd.Variable(torch.LongTensor([1, 0, 4]))
>>> output = F.nll_loss(F.log_softmax(input), target)
>>> output.backward()
"""
dim = input.dim()
if dim == 2:
f = _functions.thnn.NLLLoss(size_average, weight=weight)
elif dim == 4:
f = _functions.thnn.NLLLoss2d(size_average, weight=weight)
else:
raise ValueError('Expected 2 or 4 dimensions (got {})'.format(dim))
return f(input, target)
def kl_div(input, target, size_average=True):
r"""The `Kullback-Leibler divergence`_ Loss.
See :class:`~torch.nn.KLDivLoss` for details.
Args:
input: Variable of arbitrary shape
target: Variable of the same shape as input
size_average: if True the output is divided by the number of elements
in input tensor
"""
return _functions.thnn.KLDivLoss(size_average)(input, target)
def cross_entropy(input, target, weight=None, size_average=True):
r"""This criterion combines `log_softmax` and `nll_loss` in one single class.
See :class:`torch.nn.CrossEntropyLoss` for details.
Args:
input: Variable :math:`(N, C)` where `C = number of classes`
target: Variable :math:`(N)` where each value is `0 <= targets[i] <= C-1`
weight (Tensor, optional): a manual rescaling weight given to each
class. If given, has to be a Tensor of size "nclasses"
size_average (bool, optional): By default, the losses are averaged
over observations for each minibatch. However, if the field
sizeAverage is set to False, the losses are instead summed
for each minibatch.
"""
return nll_loss(log_softmax(input), target, weight, size_average)
def binary_cross_entropy(input, target, weight=None, size_average=True):
r"""Function that measures the Binary Cross Entropy
between the target and the output:
See :class:`~torch.nn.BCELoss` for details.
Args:
input: Variable of arbitrary shape
target: Variable of the same shape as input
weight (Variable, optional): a manual rescaling weight
if provided it's repeated to match input tensor shape
size_average (bool, optional): By default, the losses are averaged
over observations for each minibatch. However, if the field
sizeAverage is set to False, the losses are instead summed
for each minibatch.
"""
return _functions.thnn.BCELoss(size_average, weight=weight)(input, target)
def smooth_l1_loss(input, target, size_average=True):
return _functions.thnn.SmoothL1Loss(size_average)(input, target)
def pixel_shuffle(input, upscale_factor):
r"""Rearranges elements in a tensor of shape ``[*, C*r^2, H, W]`` to a
tensor of shape ``[C, H*r, W*r]``.
See :class:`~torch.nn.PixelShuffle` for details.
Args:
input (Variable): Input
upscale_factor (int): factor to increase spatial resolution by
Examples:
>>> ps = nn.PixelShuffle(3)
>>> input = autograd.Variable(torch.Tensor(1, 9, 4, 4))
>>> output = ps(input)
>>> print(output.size())
torch.Size([1, 1, 12, 12])
"""
batch_size, channels, in_height, in_width = input.size()
channels //= upscale_factor ** 2
out_height = in_height * upscale_factor
out_width = in_width * upscale_factor
input_view = input.contiguous().view(
batch_size, channels, upscale_factor, upscale_factor,
in_height, in_width)
shuffle_out = input_view.permute(0, 1, 4, 2, 5, 3).contiguous()
return shuffle_out.view(batch_size, channels, out_height, out_width)
def upsample_nearest(input, size=None, scale_factor=None):
"""Upsamples the input, using nearest neighbours' pixel values.
Currently only spatial upsampling is supported (i.e. expected inputs
are 4 dimensional).
Args:
input (Variable): input
size (int or Tuple[int, int]): output spatial size.
scale_factor (int): multiplier for spatial size. Has to be an integer.
"""
return _functions.thnn.UpsamplingNearest2d(size, scale_factor)(input)
def upsample_bilinear(input, size=None, scale_factor=None):
"""Upscales the input, using the bilinear upsampling.
Currently only spatial upsampling is supported (i.e. expected inputs
are 4 dimensional).
Args:
input (Variable): input
size (int or Tuple[int, int]): output spatial size.
scale_factor (int): multiplier for spatial size. Has to be an integer.
"""
return _functions.thnn.UpsamplingBilinear2d(size, scale_factor)(input)
def pad(input, pad, mode='constant', value=0):
"""Pads tensor.
Currently only 2D and 3D padding supported.
In case of 4D input tensor pad should be in form (pad_l, pad_r, pad_t, pad_b )
In case of 5D pad should be (pleft, pright, ptop, pbottom, pfront, pback)
Args:
input (Variable): 4D or 5D tensor
pad (tuple): 4-elem or 6-elem tuple
mode: 'constant', 'reflect' or 'replicate'
value: fill value for 'constant' padding
"""
if input.dim() == 4:
assert len(pad) == 4, '4D tensors expect 4 values for padding'
if mode == 'constant':
return ConstantPad2d(pad, value)(input)
elif mode == 'reflect':
return _functions.thnn.ReflectionPad2d(*pad)(input)
elif mode == 'replicate':
return _functions.thnn.ReplicationPad2d(*pad)(input)
elif input.dim() == 5:
assert len(pad) == 6, '5D tensors expect 6 values for padding'
if mode == 'constant':
raise NotImplementedError
elif mode == 'reflect':
raise NotImplementedError
elif mode == 'replicate':
return _functions.thnn.ReplicationPad3d(*pad)(input)
else:
raise NotImplementedError("Only 4D and 5D padding is supported for now")
# distance
def pairwise_distance(x1, x2, p=2, eps=1e-6):
r"""
Computes the batchwise pairwise distance between vectors v1,v2:
.. math ::
\Vert x \Vert _p := \left( \sum_{i=1}^n \vert x_i \vert ^ p \right) ^ {1/p}
Args:
x1: first input tensor
x2: second input tensor
p: the norm degree. Default: 2
Shape:
- Input: :math:`(N, D)` where `D = vector dimension`
- Output: :math:`(N, 1)`
>>> input1 = autograd.Variable(torch.randn(100, 128))
>>> input2 = autograd.Variable(torch.randn(100, 128))
>>> output = F.pairwise_distance(input1, input2, p=2)
>>> output.backward()
"""
assert x1.size() == x2.size(), "Input sizes must be equal."
assert x1.dim() == 2, "Input must be a 2D matrix."
diff = torch.abs(x1 - x2)
out = torch.pow(diff + eps, p).sum(dim=1)
return torch.pow(out, 1. / p)
def triplet_margin_loss(anchor, positive, negative, margin=1.0, p=2, eps=1e-6, swap=False):
r"""Creates a criterion that measures the triplet loss given an input tensors x1, x2, x3
and a margin with a value greater than 0.
This is used for measuring a relative similarity between samples. A triplet is composed by
`a`, `p` and `n`: anchor, positive examples and negative example respectively.
The shape of all input variables should be :math:`(N, D)`.
The distance swap is described in detail in the paper `Learning shallow convolutional feature descriptors with
triplet losses`_ by V. Balntas, E. Riba et al.
.. math::
L(a, p, n) = \frac{1}{N} \left( \sum_{i=1}^N \max \{d(a_i, p_i) - d(a_i, n_i) + {\rm margin}, 0\} \right)
where :math: `d(x_i, y_i) = \| {\bf x}_i - {\bf y}_i \|_2^2`.
Args:
anchor: anchor input tensor
positive: positive input tensor
negative: negative input tensor
p: the norm degree. Default: 2
eps: small epsilon value to avoid numerical issues
swap: compute distance swap
Shape:
- Input: :math:`(N, D)` where `D = vector dimension`
- Output: :math:`(N, 1)`
>>> input1 = autograd.Variable(torch.randn(100, 128))
>>> input2 = autograd.Variable(torch.randn(100, 128))
>>> input3 = autograd.Variable(torch.randn(100, 128))
>>> output = F.triplet_margin_loss(input1, input2, input3, p=2)
>>> output.backward()
.. _Learning shallow convolutional feature descriptors with triplet losses:
http://www.iis.ee.ic.ac.uk/%7Evbalnt/shallow_descr/TFeat_paper.pdf
"""
assert anchor.size() == positive.size(), "Input sizes between positive and negative must be equal."
assert anchor.size() == negative.size(), "Input sizes between anchor and negative must be equal."
assert positive.size() == negative.size(), "Input sizes between positive and negative must be equal."
assert anchor.dim() == 2, "Inputd must be a 2D matrix."
assert margin > 0.0, 'Margin should be positive value.'
d_p = pairwise_distance(anchor, positive, p, eps)
d_n = pairwise_distance(anchor, negative, p, eps)
if swap:
d_s = pairwise_distance(positive, negative, p, eps)
d_n = torch.min(d_n, d_s)
dist_hinge = torch.clamp(margin + d_p - d_n, min=0.0)
loss = torch.mean(dist_hinge)
return loss
def dice_loss(input,target):
"""
input is a torch variable of size BatchxnclassesxHxW representing log probabilities for each class
target is a 1-hot representation of the groundtruth, shoud have same size as the input
"""
assert input.size() == target.size(), "Input sizes must be equal."
assert input.dim() == 4, "Input must be a 4D Tensor."
uniques=np.unique(target.numpy())
assert set(list(uniques))<=set([0,1]), "target must only contain zeros and ones"
probs=F.softmax(input)
num=probs*target#b,c,h,w--p*g
num=torch.sum(num,dim=3)#b,c,h
num=torch.sum(num,dim=2)
den1=probs*probs#--p^2
den1=torch.sum(den1,dim=3)#b,c,h
den1=torch.sum(den1,dim=2)
den2=target*target#--g^2
den2=torch.sum(den2,dim=3)#b,c,h
den2=torch.sum(den2,dim=2)#b,c
dice=2*(num/(den1+den2))
dice_eso=dice[:,1:]#we ignore bg dice val, and take the fg
dice_total=-1*torch.sum(dice_eso)/dice_eso.size(0)#divide by batch_sz
return dice_total