-
Notifications
You must be signed in to change notification settings - Fork 1
/
Dust_min_part.m
102 lines (88 loc) · 4.36 KB
/
Dust_min_part.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
function [min_mass,min_len,N_I] = Dust_min_part(v_kms_1,C,tau_r,tau_d,alpha,f,l,a,...
N,T,P,S,F,rho,Q,A)
% Calculates the minimum size particle hit necessary to produce a dust
% voltage power value 'A' times above the shot noise at a given frequency
% for a dipole antenna. The mass and length of the particle are quoted as
% final results. This function also calculates the impact rate for such a
% particular to impact an object (such as a spacecraft) given the
% cumulative flux distribution (as a function of length L).
%
%% Inputs:
% v_kms_1 - speed of dust particles relative to the CubeSat (km.s^-1)
% C - capacitance of antenna (F)
% tau_r - rise time constant of signal (s)
% tau_d - decay time constant of signal (s)
% alpha - fraction of charge contributing to signal
% f - frequency of interest (single value) (Hz)
% l - length of one arm of the dipole antenna (m)
% a - radius of antenna wire (m)
% N - electron density of plasma (m^-3)
% T - Temperature of plasma (K)
% P - potential of antenna (V)
% S - surface area of object impacted by dust (m)
% F - cumulative dust flux distribution function @(L) (m^-2.s^-1)
% rho - density of dust to convert length to mass (kg.m^-3)
% Q - charge released on impact function @(v_kms_1,m) (C)
% A - desired factor of dust spectrum above the shot noise
%
%% Output:
% min_mass - the minimum mass of the dust particle (kg)
% min_len - the minimum length (diameter) of the particle (m)
% N_I - given F and S, the impact rate on the object (s^-1)
%% Calculations
% Calculates the voltage power spectrum V2S for shot noise in a
% thermal plasma with temperature T and density N, on an antenna of
% length l, thickness a, with wire dipole configuration. Using V2S, we see
% what mass particle will produce a dust signal at the given frequency that
% is A times above the shot noise value V2S
% Frequency converted into omega/w
omega = 2*pi*f;
% Physical constants
kB = 1.3806488e-23; % Boltzmann constant
me = 9.109383e-31; % Mass of electron
e = 1.60217657e-19; % Electron charge
eps0 = 8.85418782e-12; % Vacuum Permittivity
% Plasma parameters
LD = sqrt((kB*T*eps0)/(N*e^2));
vT = sqrt(2*kB*T/me); % Thermal velocity of electrons
% Surface area, impact rate, conversion between z and omega
S_a=2*pi*a*l;
N_e = ((4*pi)^(-0.5))*N*vT*S_a;
z = @(x) omega./(x.*vT);
% Functions in integrand
F1 = @(x) ((sinint(x))-(sinint(2*x)./2)-((2*((sin(x/2)).^4))./x))./x;
W = @(x) faddeeva1(x);
epsL = @(k) (1 + ((1 + (1i)*sqrt(pi)*z(k).*W(z(k)))./((k.^2)*(LD^2))));
% Integral calculation
Int = @(k) (((F1(k*l)).*((besselj(0,k*a)).^2))./(epsL(k)));
kmax = 1e5;
kmin = 1e-5;
Integral1 = quadgk(Int,kmin,kmax,'MaxIntervalCount',1000000);
% Impedance and calculation of shot noise
Z = (((4i)/((pi^2)*eps0*omega))*Integral1);
V2S = (2*(e^2)*N_e)*((abs(Z))^2)*exp(e*P/(kB*T));
% Dust voltage power spectrum
% Firstly, the cumulative dust flux distribution is given as a function of
% the length of the particle. We assume that this length is the diameter of
% the dust and that it follows a simple power law form with coefficients of
% B and c:
% F(L) = B * L^c.
% We also assume the dust particles are spherical in shape so that we
% convert between mass and length via the function:
L = @(m) ((6*m)/(rho*pi)).^(1/3);
% with rho the density of the dust.
% The factor in dust spectrum not dependent on m:
V2d_C = (alpha^2)/(2*C^2*tau_r^2*omega^4)*...
((tau_r^2*omega^2)/(tau_r^2*omega^2+1))*...
((tau_d^2*omega^2)/(tau_d^2*omega^2+1));
% Dust spectrum as a function of m:
V2d = @(m) V2d_C*Q(m,v_kms_1).^2;
% Solve for 'x' such that V2d(x) = A*V2S to find the minimum mass:
syms x positive
eqn = V2d(x) == A*V2S;
min_mass = double(solve(eqn,x,'Real',true));
% Convert to length:
min_len = L(min_mass);
% Find impact rate
N_I = S*F(min_len);
end