-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrunning.py
322 lines (307 loc) · 14.8 KB
/
running.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
'''
Description:
Model (with alignment) training and prediction.
Author:
Jiaqi Zhang <jiaqi_zhang2@brown.edu>
'''
import copy
import torch
from tqdm import tqdm
import numpy as np
import itertools
import ot
import time
from scipy.sparse.csgraph import dijkstra
from scipy.sparse import csr_matrix
from sklearn.neighbors import kneighbors_graph
from model.layer import LinearNet
from model.diff_solver import ODE
from model.dynamic_model import scMultiNODE
from optim.loss_func import SinkhornLoss, MSELoss
from optim.quantizedGW import compressed_gw_point_cloud as qGW
from random import sample
# =============================================
def constructscMultiNODEModel(
n_genes, n_peaks, latent_dim, anchor_mod,
rna_enc_latent=None, rna_dec_latent=None, atac_enc_latent=None, atac_dec_latent=None,
fusion_latent = None, drift_latent=None,
act_name="relu", ode_method="euler"
):
rna_enc = LinearNet(input_dim=n_genes, latent_size_list=rna_enc_latent, output_dim=latent_dim, act_name=act_name)
rna_dec = LinearNet(input_dim=latent_dim, latent_size_list=rna_dec_latent, output_dim=n_genes, act_name=act_name)
atac_enc = LinearNet(input_dim=n_peaks, latent_size_list=atac_enc_latent, output_dim=latent_dim, act_name=act_name)
atac_dec = LinearNet(input_dim=latent_dim, latent_size_list=atac_dec_latent, output_dim=n_peaks, act_name=act_name)
fusion_layer = LinearNet(input_dim=latent_dim, latent_size_list=fusion_latent, output_dim=latent_dim, act_name=act_name)
diffeq_drift_net = LinearNet(input_dim=latent_dim, latent_size_list=drift_latent, output_dim=latent_dim, act_name=act_name)
diffeq_decoder = ODE(input_dim=latent_dim, drift_net=diffeq_drift_net, ode_method=ode_method)
model = scMultiNODE(
n_genes, n_peaks,
latent_dim=latent_dim, anchor_mod=anchor_mod,
rna_enc=rna_enc, rna_dec=rna_dec, atac_enc=atac_enc, atac_dec=atac_dec,
fusion_layer=fusion_layer, diffeq_decoder=diffeq_decoder
)
return model
# =============================================
def scMultiNODETrain(
rna_train_data, atac_train_data,
rna_train_tps, atac_train_tps,
dynamic_model,
iters, batch_size, lr,
ae_iters=200, ae_lr=1e-3, ae_batch_size=128,
fusion_iters=200, fusion_lr=1e-3, fusion_batch_size=128,
align_coeff=1.0, dyn_reg_coeff=1.0, train_all=True,
n_neighbors=10, qgw_sample_ratio=0.1, gw_type="gw", epsilon=1e-2
):
# =========================
# Preparation
all_rna_train_data = torch.cat(rna_train_data, dim=0)
all_atac_train_data = torch.cat(atac_train_data, dim=0)
# =========================
# Step I: train two encoder-decoders separately for two modalities
rna_enc = dynamic_model.rna_enc
rna_dec = dynamic_model.rna_dec
atac_enc = dynamic_model.atac_enc
atac_dec = dynamic_model.atac_dec
rna_loss_list = []
atac_loss_list = []
rna_ae_params = itertools.chain(*[rna_enc.parameters(), rna_dec.parameters()])
atac_ae_params = itertools.chain(*[atac_enc.parameters(), atac_dec.parameters()])
rna_optimizer = torch.optim.Adam(params=rna_ae_params, lr=ae_lr, betas=(0.95, 0.99))
atac_optimizer = torch.optim.Adam(params=atac_ae_params, lr=ae_lr, betas=(0.95, 0.99))
ae_pbar = tqdm(range(ae_iters), desc="[ AE Pre-Training ]")
rna_enc.train()
rna_dec.train()
atac_enc.train()
atac_dec.train()
for t in ae_pbar: # we put RNA and ATAC training in the same loop just for simplicity, but they are independent
rna_optimizer.zero_grad()
atac_optimizer.zero_grad()
rna_batch_data = all_rna_train_data[np.random.choice(np.arange(all_rna_train_data.shape[0]), ae_batch_size, replace=False), :]
atac_batch_data = all_atac_train_data[np.random.choice(np.arange(all_atac_train_data.shape[0]), ae_batch_size, replace=False), :]
# -----
latent_rna_sample = rna_enc(rna_batch_data)
rna_recon = rna_dec(latent_rna_sample)
latent_atac_sample = atac_enc(atac_batch_data)
atac_recon = atac_dec(latent_atac_sample)
# -----
rna_recon_loss = MSELoss(rna_batch_data, rna_recon)
atac_recon_loss = MSELoss(atac_batch_data, atac_recon)
ae_pbar.set_postfix({
"RNA Loss": "{:.4f}".format(rna_recon_loss),
"ATAC Loss": "{:.4f}".format(atac_recon_loss),
})
rna_loss_list.append([rna_recon_loss.item()])
atac_loss_list.append([atac_recon_loss.item()])
rna_recon_loss.backward()
rna_optimizer.step()
atac_recon_loss.backward()
atac_optimizer.step()
dynamic_model.rna_enc = rna_enc
dynamic_model.rna_dec = rna_dec
dynamic_model.atac_enc = atac_enc
dynamic_model.atac_dec = atac_dec
ae_trained_model = copy.deepcopy(dynamic_model)
# =========================
# Step II: QGW aligns two modalities based on latent representations
dynamic_model.eval()
latent_rna_sample = dynamic_model.rna_enc(all_rna_train_data)
latent_atac_sample = dynamic_model.atac_enc(all_atac_train_data)
n_rna_cells = latent_rna_sample.shape[0]
n_atac_cells = latent_atac_sample.shape[0]
# Compute cell similarities
latent_rna_sample_copy = latent_rna_sample.detach().numpy()
latent_atac_sample_copy = latent_atac_sample.detach().numpy()
C1 = _mod_distance(latent_rna_sample_copy, n_neighbors, "correlation")
C2 = _mod_distance(latent_atac_sample_copy, n_neighbors, "correlation")
C1 = np.nan_to_num(C1, nan=0.0)
C2 = np.nan_to_num(C2, nan=0.0)
C1 /= np.max(C1)
C2 /= np.max(C2)
# GW to align anchor cells between two modalities
start = time.time()
p = ot.unif(n_rna_cells)
q = ot.unif(n_atac_cells)
# Subset of node features
sample_ratio = qgw_sample_ratio
node_subset1 = list(set(sample(list(range(n_rna_cells)), int(sample_ratio*n_rna_cells))))
node_subset2 = list(set(sample(list(range(n_atac_cells)), int(sample_ratio*n_atac_cells))))
sgw = qGW(C1, C2, p, q, node_subset1, node_subset2, return_dense=False, verbose=True, gw_type=gw_type, epsilon=epsilon)
end = time.time()
length = end - start
print('Quantized Gromov-Wasserstein distance: Time cost = {} secs'.format(length))
sgw = sgw / sgw.max()
sgw[np.abs(sgw) <= 0.01] = 0.0 # sgw is cell correspondence matrix
if not isinstance(sgw, csr_matrix):
sgw = csr_matrix(sgw)
# =========================
# Step III: learn joint latent space based on cell correspondence
rna_enc = dynamic_model.rna_enc
rna_dec = dynamic_model.rna_dec
atac_enc = dynamic_model.atac_enc
atac_dec = dynamic_model.atac_dec
fusion_layer = dynamic_model.fusion_layer
fusion_loss_list = []
fusion_params = itertools.chain(*[
rna_dec.parameters(), atac_dec.parameters(),
rna_enc.parameters(), atac_enc.parameters(),
fusion_layer.parameters()
])
fusion_optimizer = torch.optim.Adam(params=fusion_params, lr=fusion_lr, betas=(0.95, 0.99))
fusion_pbar = tqdm(range(fusion_iters), desc="[ Joint Latent Training ]")
rna_dec.train()
rna_enc.train()
atac_enc.train()
atac_dec.train()
fusion_layer.train()
for t in fusion_pbar:
fusion_optimizer.zero_grad()
rna_batch_idx = np.random.choice(np.arange(all_rna_train_data.shape[0]), fusion_batch_size, replace=False)
atac_batch_idx = np.random.choice(np.arange(all_atac_train_data.shape[0]), fusion_batch_size, replace=False)
source_idx1, target_idx1 = _extractAlignIdx(sgw, rna_batch_idx) # from RNA to ATAC
source_idx2, target_idx2 = _extractAlignIdx(sgw.T, atac_batch_idx) # from ATAC to RNA
# -----
# Reconstruction
rna_batch = all_rna_train_data[rna_batch_idx, :]
atac_batch = all_atac_train_data[atac_batch_idx,:]
rna_latent = fusion_layer(rna_enc(rna_batch))
atac_latent = fusion_layer(atac_enc(atac_batch))
rna_recon = rna_dec(rna_latent)
atac_recon = atac_dec(atac_latent)
rna_recon_loss = MSELoss(rna_batch, rna_recon)
atac_recon_loss = MSELoss(atac_batch, atac_recon)
# -----
# RNA-ATAC Alignment
if target_idx1 is not None:
source_batch1 = all_rna_train_data[source_idx1, :]
target_batch1 = all_atac_train_data[target_idx1, :]
source_latent1 = fusion_layer(rna_enc(source_batch1))
target_latent1 = fusion_layer(atac_enc(target_batch1))
rna_align_loss = align_coeff * MSELoss(source_latent1, target_latent1, reduction="mean")
else:
rna_align_loss = 0.0
# -----
# ATAC-RNA Alignment
if target_idx2 is not None:
source_batch2 = all_atac_train_data[source_idx2, :]
target_batch2 = all_rna_train_data[target_idx2, :]
source_latent2 = fusion_layer(atac_enc(source_batch2))
target_latent2 = fusion_layer(rna_enc(target_batch2))
atac_align_loss = align_coeff * MSELoss(source_latent2, target_latent2, reduction="mean")
else:
atac_align_loss = 0.0
# -----
# Loss computation
fusion_loss = rna_recon_loss + atac_recon_loss + rna_align_loss + atac_align_loss
# Backward
fusion_pbar.set_postfix({
"Loss": "{:.3f}".format(fusion_loss),
"RNA recon": "{:.3f}".format(rna_recon_loss),
"ATAC recon": "{:.3f}".format(atac_recon_loss),
"RNA align": "{:.3f}".format(rna_align_loss),
"ATAC align": "{:.3f}".format(atac_align_loss),
})
fusion_loss_list.append([
fusion_loss.item(), rna_recon_loss.item(), atac_recon_loss.item(),
rna_align_loss.item(), atac_align_loss.item()
])
fusion_loss.backward()
fusion_optimizer.step()
dynamic_model.rna_enc = rna_enc
dynamic_model.rna_dec = rna_dec
dynamic_model.atac_enc = atac_enc
dynamic_model.atac_dec = atac_dec
dynamic_model.fusion_layer = fusion_layer
fusion_trained_model = copy.deepcopy(dynamic_model)
# =========================
# Step IV: incorporate dynamics in the joint latent space
# =========================
if train_all:
dynamic_params = dynamic_model.parameters()
else:
dynamic_params = itertools.chain(*[
dynamic_model.diffeq_decoder.parameters(),
dynamic_model.rna_dec.parameters(),
dynamic_model.atac_dec.parameters(),
])
dynamic_optimizer = torch.optim.Adam(params=dynamic_params, lr=lr, betas=(0.95, 0.99))
dynamic_pbar = tqdm(range(iters), desc="[ Dynamic Training ]")
dynamic_model.train()
rna_loss_coeff = 1.0
atac_loss_coeff = 1.0
dyn_reg_coeff = dyn_reg_coeff
blur = 0.05
scaling = 0.5
dynamic_loss_list = []
for t in dynamic_pbar:
dynamic_optimizer.zero_grad()
rna_recon_obs, atac_recon_obs, first_tp_data, rna_latent_seq, atac_latent_seq = dynamic_model(
rna_train_data[0], rna_train_tps, atac_train_tps, batch_size=batch_size
)
# -----
# Reconstruction loss
rna_loss = rna_loss_coeff * SinkhornLoss(rna_train_data, rna_recon_obs, blur=blur, scaling=scaling, batch_size=200)
atac_loss = atac_loss_coeff * SinkhornLoss(atac_train_data, atac_recon_obs, blur=blur, scaling=scaling, batch_size=200)
# -----
# Regularization
rna_pretrain_latents = [dynamic_model.fusion_layer(dynamic_model.rna_enc(rna_train_curr_tp)) for rna_train_curr_tp in rna_train_data]
atac_pretrain_latents = [dynamic_model.fusion_layer(dynamic_model.atac_enc(atac_train_curr_tp)) for atac_train_curr_tp in atac_train_data]
rna_latent_loss = dyn_reg_coeff * SinkhornLoss(rna_pretrain_latents, rna_latent_seq, blur=blur, scaling=scaling, batch_size=200)
atac_latent_loss = dyn_reg_coeff * SinkhornLoss(atac_pretrain_latents, atac_latent_seq, blur=blur, scaling=scaling, batch_size=200)
# -----
# Backward
dynamic_loss = rna_loss + atac_loss + rna_latent_loss + atac_latent_loss
dynamic_pbar.set_postfix({
"Loss": "{:.3f}".format(dynamic_loss),
"RNA Loss": "{:.3f}".format(rna_loss),
"ATAC Loss": "{:.3f}".format(atac_loss),
"RNA Reg": "{:.3f}".format(rna_latent_loss),
"ATAC Reg": "{:.3f}".format(atac_latent_loss),
})
dynamic_loss_list.append(
[dynamic_loss.item(), rna_loss.item(), atac_loss.item(), rna_latent_loss.item(), atac_latent_loss.item()])
dynamic_loss.backward()
dynamic_optimizer.step()
# =========================
# Wrap up
return dynamic_model, ae_trained_model, fusion_trained_model, sgw, C1, C2
def _extractAlignIdx(coup_mat, source_idx):
used_source_idx = source_idx[np.where(np.asarray(np.sum(coup_mat[source_idx, :], axis=1)).squeeze() != 0)[0]]
if len(used_source_idx) == 0:
return None, None
source_mat = coup_mat[used_source_idx, :]
target_idx = np.asarray(np.argmax(source_mat, axis=1)).squeeze()
return used_source_idx, target_idx
def _mod_distance(feature_mat, n_neighbors, metric):
# Compute intra-modality distance matrix
# Reference: https://github.com/rsinghlab/SCOT
start = time.time()
# cosine, correlation
knn_graph = kneighbors_graph(feature_mat, n_neighbors, mode="connectivity", metric=metric, include_self=True)
# Compute shortest distances
shortest_path = dijkstra(csgraph=csr_matrix(knn_graph), directed=False, return_predecessors=False)
# shortest_path = dijkstra(csgraph=csr_matrix(knn_graph), directed=False, return_predecessors=False, limit=5)
# Deal with unconnected stuff (infinities):
distance_max = np.nanmax(shortest_path[shortest_path != np.inf])
shortest_path[shortest_path > distance_max] = distance_max
# shortest_path = csr_matrix(shortest_path)
end = time.time()
time_cost = end - start
print("[Intra-Mod. KNN | {}] Time cost = {:.4f} secs".format(metric, time_cost))
return shortest_path
# =============================================
def scMultiNODEPredict(dynamic_model, first_tp_data, rna_tps, atac_tps, n_cells):
'''
scMultiNODE predicts expressions.
:param latent_ode_model (torch.Model): scNODE model.
:param first_tp_data (torch.FloatTensor): Expression at the first timepoint.
:param tps (torch.FloatTensor): A list of timepoints to predict.
:param n_cells (int): The number of cells to predict at each timepoint.
:param batch_size (None or int): Either None indicates predicting in a whole or an integer representing predicting
batch-wise to save computational costs. Default as None.
:return: (torch.FloatTensor) Predicted expression with the shape of (# cells, # tps, # genes).
'''
dynamic_model.eval()
rna_latent_seq, atac_latent_seq, rna_recon_obs, atac_recon_obs = dynamic_model.predict(
first_tp_data, rna_tps, atac_tps, n_cells=n_cells
)
return rna_recon_obs, atac_recon_obs