forked from vadimkantorov/metriclearningbench
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathinception_v1_googlenet.py
86 lines (69 loc) · 3.07 KB
/
inception_v1_googlenet.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
from collections import OrderedDict
import torch
import torch.nn as nn
class inception_v1_googlenet(nn.Sequential):
output_size = 1024
input_side = 227
rescale = 255.0
rgb_mean = [122.7717, 115.9465, 102.9801]
rgb_std = [1, 1, 1]
def __init__(self):
super(inception_v1_googlenet, self).__init__(OrderedDict([
('conv1', nn.Sequential(OrderedDict([
('7x7_s2', nn.Conv2d(3, 64, (7, 7), (2, 2), (3, 3))),
('relu1', nn.ReLU(True)),
('pool1', nn.MaxPool2d((3, 3), (2, 2), ceil_mode = True)),
('lrn1', nn.CrossMapLRN2d(5, 0.0001, 0.75, 1))
]))),
('conv2', nn.Sequential(OrderedDict([
('3x3_reduce', nn.Conv2d(64, 64, (1, 1), (1, 1), (0, 0))),
('relu1', nn.ReLU(True)),
('3x3', nn.Conv2d(64, 192, (3, 3), (1, 1), (1, 1))),
('relu2', nn.ReLU(True)),
('lrn2', nn.CrossMapLRN2d(5, 0.0001, 0.75, 1)),
('pool2', nn.MaxPool2d((3, 3), (2, 2), ceil_mode = True))
]))),
('inception_3a', InceptionModule(192, 64, 96, 128, 16, 32, 32)),
('inception_3b', InceptionModule(256, 128, 128, 192, 32, 96, 64)),
('pool3', nn.MaxPool2d((3, 3), (2, 2), ceil_mode = True)),
('inception_4a', InceptionModule(480, 192, 96, 208, 16, 48, 64)),
('inception_4b', InceptionModule(512, 160, 112, 224, 24, 64, 64)),
('inception_4c', InceptionModule(512, 128, 128, 256, 24, 64, 64)),
('inception_4d', InceptionModule(512, 112, 144, 288, 32, 64, 64)),
('inception_4e', InceptionModule(528, 256, 160, 320, 32, 128, 128)),
('pool4', nn.MaxPool2d((3, 3), (2, 2), ceil_mode = True)),
('inception_5a', InceptionModule(832, 256, 160, 320, 32, 128, 128)),
('inception_5b', InceptionModule(832, 384, 192, 384, 48, 128, 128)),
('pool5', nn.AvgPool2d((7, 7), (1, 1), ceil_mode = True)),
#('drop5', nn.Dropout(0.4))
]))
class InceptionModule(nn.Module):
def __init__(self, inplane, outplane_a1x1, outplane_b3x3_reduce, outplane_b3x3, outplane_c5x5_reduce, outplane_c5x5, outplane_pool_proj):
super(InceptionModule, self).__init__()
a = nn.Sequential(OrderedDict([
('1x1', nn.Conv2d(inplane, outplane_a1x1, (1, 1), (1, 1), (0, 0))),
('1x1_relu', nn.ReLU(True))
]))
b = nn.Sequential(OrderedDict([
('3x3_reduce', nn.Conv2d(inplane, outplane_b3x3_reduce, (1, 1), (1, 1), (0, 0))),
('3x3_relu1', nn.ReLU(True)),
('3x3', nn.Conv2d(outplane_b3x3_reduce, outplane_b3x3, (3, 3), (1, 1), (1, 1))),
('3x3_relu2', nn.ReLU(True))
]))
c = nn.Sequential(OrderedDict([
('5x5_reduce', nn.Conv2d(inplane, outplane_c5x5_reduce, (1, 1), (1, 1), (0, 0))),
('5x5_relu1', nn.ReLU(True)),
('5x5', nn.Conv2d(outplane_c5x5_reduce, outplane_c5x5, (5, 5), (1, 1), (2, 2))),
('5x5_relu2', nn.ReLU(True))
]))
d = nn.Sequential(OrderedDict([
('pool_pool', nn.MaxPool2d((3, 3), (1, 1), (1, 1))),
('pool_proj', nn.Conv2d(inplane, outplane_pool_proj, (1, 1), (1, 1), (0, 0))),
('pool_relu', nn.ReLU(True))
]))
for container in [a, b, c, d]:
for name, module in container.named_children():
self.add_module(name, module)
self.branches = [a, b, c, d]
def forward(self, input):
return torch.cat([branch(input) for branch in self.branches], 1)