forked from vadimkantorov/metriclearningbench
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathstanford_online_products.py
56 lines (46 loc) · 1.87 KB
/
stanford_online_products.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
import os
import torch
import torch.utils.data as data
import torchvision
from torchvision.datasets import ImageFolder
from torchvision.datasets import CIFAR10
from torchvision.datasets.utils import download_url
from torchvision.datasets.folder import default_loader
class StanfordOnlineProducts(ImageFolder, CIFAR10):
base_folder = 'Stanford_Online_Products'
url = 'ftp://cs.stanford.edu/cs/cvgl/Stanford_Online_Products.zip'
filename = 'Stanford_Online_Products.zip'
zip_md5 = '7f73d41a2f44250d4779881525aea32e'
train_list = [
['bicycle_final/111265328556_0.JPG', '77420a4db9dd9284378d7287a0729edb'],
['chair_final/111182689872_0.JPG', 'ce78d10ed68560f4ea5fa1bec90206ba']
]
test_list = [
['table_final/111194782300_0.JPG', '8203e079b5c134161bbfa7ee2a43a0a1'],
['toaster_final/111157129195_0.JPG', 'd6c24ee8c05d986cafffa6af82ae224e']
]
num_training_classes = 11318
def __init__(self, root, train=False, transform=None, target_transform=None, download=False, **kwargs):
self.root = root
self.transform = transform
self.target_transform = target_transform
self.loader = default_loader
if download:
self.download()
if not self._check_integrity():
raise RuntimeError('Dataset not found or corrupted.' +
' You can use download=True to download it')
self.imgs = [(os.path.join(root, self.base_folder, path), int(class_id) - 1) for i, (image_id, class_id, super_class_id, path) in enumerate(map(str.split, open(os.path.join(root, self.base_folder, 'Ebay_{}.txt'.format('train' if train else 'test'))))) if i > 1]
def download(self):
import zipfile
if self._check_integrity():
print('Files already downloaded and verified')
return
root = self.root
download_url(self.url, root, self.filename, self.zip_md5)
# extract file
cwd = os.getcwd()
os.chdir(root)
with zipfile.ZipFile(self.filename, "r") as zip:
zip.extractall()
os.chdir(cwd)