diff --git a/DESCRIPTION b/DESCRIPTION index c3fb716..280d59e 100644 --- a/DESCRIPTION +++ b/DESCRIPTION @@ -1,7 +1,7 @@ Package: inferr Type: Package Title: Inferential Statistics -Version: 0.3.1 +Version: 0.3.1.9000 Authors@R: person("Aravind", "Hebbali", email = "hebbali.aravind@gmail.com", role = c("aut", "cre"), comment = c(ORCID = "0000-0001-9220-9669")) Description: Select set of parametric and non-parametric statistical tests. 'inferr' builds upon the solid set of diff --git a/NEWS.md b/NEWS.md index edf5ac4..4ee3644 100644 --- a/NEWS.md +++ b/NEWS.md @@ -1,4 +1,6 @@ -# inferr 0.3.0.1 +# inferr 0.3.1.9000 + +# inferr 0.3.1 This is a patch release to fix error on R-devel on Debian and Fedora. diff --git a/README.Rmd b/README.Rmd index 4c04d58..c96ce25 100644 --- a/README.Rmd +++ b/README.Rmd @@ -109,3 +109,7 @@ infer_mcnemar_test(hb, himath, hiread) If you encounter a bug, please file a minimal reproducible example using [reprex](https://reprex.tidyverse.org/index.html) on github. For questions and clarifications, use [StackOverflow](https://stackoverflow.com/). + +## Code of Conduct + +Please note that this project is released with a [Contributor Code of Conduct](CONDUCT.md). By participating in this project you agree to abide by its terms. diff --git a/README.md b/README.md index 8457a90..1603e2e 100644 --- a/README.md +++ b/README.md @@ -215,3 +215,9 @@ If you encounter a bug, please file a minimal reproducible example using [reprex](https://reprex.tidyverse.org/index.html) on github. For questions and clarifications, use [StackOverflow](https://stackoverflow.com/). + +## Code of Conduct + +Please note that this project is released with a [Contributor Code of +Conduct](CONDUCT.md). By participating in this project you agree to +abide by its terms. diff --git a/docs/404.html b/docs/404.html index edae1f1..d2cad67 100644 --- a/docs/404.html +++ b/docs/404.html @@ -71,7 +71,7 @@ inferr - 0.3.1 + 0.3.1.9000 diff --git a/docs/CONDUCT.html b/docs/CONDUCT.html index 7860797..53a31aa 100644 --- a/docs/CONDUCT.html +++ b/docs/CONDUCT.html @@ -71,7 +71,7 @@ inferr - 0.3.1 + 0.3.1.9000 diff --git a/docs/LICENSE-text.html b/docs/LICENSE-text.html index 2ffe05c..f9eacef 100644 --- a/docs/LICENSE-text.html +++ b/docs/LICENSE-text.html @@ -71,7 +71,7 @@ inferr - 0.3.1 + 0.3.1.9000 diff --git a/docs/articles/index.html b/docs/articles/index.html index 8ee38e9..cb6ebe6 100644 --- a/docs/articles/index.html +++ b/docs/articles/index.html @@ -71,7 +71,7 @@ inferr - 0.3.0.9000 + 0.3.1.9000 diff --git a/docs/articles/intro.html b/docs/articles/intro.html index 909adfb..d66d869 100644 --- a/docs/articles/intro.html +++ b/docs/articles/intro.html @@ -31,7 +31,7 @@ inferr - 0.3.0.9000 + 0.3.1.9000 @@ -85,12 +85,12 @@ -
+
##                               One-Sample Statistics                               
 ## ---------------------------------------------------------------------------------
 ##  Variable    Obs     Mean     Std. Err.    Std. Dev.    [95% Conf. Interval] 
@@ -147,7 +147,7 @@ 

## ## Ha: mean < 50 Ha: mean ~= 50 Ha: mean > 50 ## t = 4.141 t = 4.141 t = 4.141 -## P < t = 1.0000 P > |t| = 0.0001 P > t = 0.0000

+## P < t = 0.99997 P > |t| = 0.00005 P > t = 0.00003
@@ -160,7 +160,7 @@

Using the hsb data, test whether the mean of read is equal to the mean of write.

 # Lower Tail Test
-ifr_ts_paired_ttest(hsb, read, write, alternative = 'less')
+infer_ts_paired_ttest(hsb, read, write, alternative = 'less')

##                          Paired Samples Statistics                           
 ## ----------------------------------------------------------------------------
 ## Variables    Obs     Mean     Std. Err.    Std. Dev.    [95% Conf. Interval] 
@@ -189,7 +189,7 @@ 

## ----------------------------------------

 # Test all alternatives
-ifr_ts_paired_ttest(hsb, read, write, alternative = 'all')
+infer_ts_paired_ttest(hsb, read, write, alternative = 'all')
##                          Paired Samples Statistics                           
 ## ----------------------------------------------------------------------------
 ## Variables    Obs     Mean     Std. Err.    Std. Dev.    [95% Conf. Interval] 
@@ -226,7 +226,7 @@ 

Example

Using the hsb data, test whether the mean for write is the same for males and females.

-ifr_ts_ind_ttest(hsb, female, write, alternative = 'all')
+infer_ts_ind_ttest(hsb, female, write, alternative = 'all')
##                               Group Statistics                                
 ## -----------------------------------------------------------------------------
 ##   Group       Obs     Mean     Std. Err.    Std. Dev.    [95% Conf. Interval] 
@@ -275,7 +275,7 @@ 

Using hsb data, test whether the proportion of females is 50%.

 # Using Variables
-ifr_os_prop_test(hsb, female, prob = 0.5)
+infer_os_prop_test(hsb, female, prob = 0.5)

##      Test Statistics      
 ## -------------------------
 ## Sample Size           200 
@@ -293,7 +293,7 @@ 

Using Calculator

 # Calculator
-ifr_os_prop_test(200, prob = 0.5, phat = 0.3)
+infer_os_prop_test(200, prob = 0.5, phat = 0.3)

##      Test Statistics       
 ## --------------------------
 ## Sample Size            200 
@@ -323,7 +323,7 @@ 

Using the treatment data, test equality of proportion of two treatments

 # Using Variables
-ifr_ts_prop_test(treatment, treatment1, treatment2, alternative = 'all')
+infer_ts_prop_test(treatment, treatment1, treatment2, alternative = 'all')

##        Test Statistics        
 ## -----------------------------
 ## Total Observations        100 
@@ -338,7 +338,7 @@ 

Using the treatment2 data, test whether outcome has same proportion for male and female

 # Using Grouping Variable
-ifr_ts_prop_group(treatment2, outcome, female, alternative = 'all')
+infer_ts_prop_group(treatment2, outcome, female, alternative = 'all')

##        Test Statistics        
 ## -----------------------------
 ## Total Observations        200 
@@ -353,7 +353,7 @@ 

Test whether the same proportion of people from two batches will pass a review exam for a training program. In the first batch of 30 participants, 30% passed the review, whereas in the second batch of 25 participants, 50% passed the review.

 # Calculator
-ifr_ts_prop_calc(n1 = 30, n2 = 25, p1 = 0.3, p2 = 0.5, alternative = 'all')
+infer_ts_prop_calc(n1 = 30, n2 = 25, p1 = 0.3, p2 = 0.5, alternative = 'all')

##        Test Statistics         
 ## ------------------------------
 ## Total Observations          55 
@@ -379,7 +379,7 @@ 

Using the mtcars data, compare the standard deviation of mpg to a hypothesized value.

 # Lower Tail Test
-ifr_os_var_test(mtcars, mpg, 0.3, alternative = 'less')
+infer_os_var_test(mtcars, mpg, 0.3, alternative = 'less')

##                             One-Sample Statistics                             
 ## -----------------------------------------------------------------------------
 ##  Variable    Obs     Mean      Std. Err.    Std. Dev.    [95% Conf. Interval] 
@@ -400,7 +400,7 @@ 

## ----------------------------------------

 # Test all alternatives
-ifr_os_var_test(mtcars, mpg, 0.3, alternative = 'all')
+infer_os_var_test(mtcars, mpg, 0.3, alternative = 'all')
##                             One-Sample Statistics                             
 ## -----------------------------------------------------------------------------
 ##  Variable    Obs     Mean      Std. Err.    Std. Dev.    [95% Conf. Interval] 
@@ -428,7 +428,7 @@ 

Using the mtcars data, compare the standard deviation in miles per gallon for automatic and manual vehicles.

 # Using Grouping Variable
-ifr_ts_var_test(hsb, read, group_var = female, alternative = 'all')
+infer_ts_var_test(hsb, read, group_var = female, alternative = 'all')

##                Variance Ratio Test                 
 ## --------------------------------------------------
 ##   Group      Obs    Mean     Std. Err.    Std. Dev. 
@@ -461,7 +461,7 @@ 

Using the hsb data, compare the standard deviation of reading and writing scores.

 # Using Variables
-ifr_ts_var_test(hsb, read, write, alternative = 'all')
+infer_ts_var_test(hsb, read, write, alternative = 'all')

##                Variance Ratio Test                 
 ## --------------------------------------------------
 ##   Group      Obs    Mean     Std. Err.    Std. Dev. 
@@ -500,7 +500,7 @@ 

Using the hsb data, test whether the proportion of females and males are equal.

 # Using variables
-ifr_binom_test(hsb, female, prob = 0.5)
+infer_binom_test(hsb, female, prob = 0.5)

##              Binomial Test              
 ##  ---------------------------------------
 ##   Group     N     Obs. Prop    Exp. Prop 
@@ -522,7 +522,7 @@ 

Using Calculator

 # calculator
-ifr_binom_calc(32, 16, prob = 0.5)
+infer_binom_calc(32, 16, prob = 0.5)
##             Binomial Test              
 ##  --------------------------------------
 ##   Group    N     Obs. Prop    Exp. Prop 
@@ -551,7 +551,7 @@ 

Examples

Using the hsb data, test whether the mean of write differs between the three program types.

-ifr_oneway_anova(hsb, write, prog)
+infer_oneway_anova(hsb, write, prog)
##                                 ANOVA                                  
 ## ----------------------------------------------------------------------
 ##                    Sum of                                             
@@ -585,7 +585,7 @@ 

Using the hsb data, test whether the observed proportions for race differs significantly from the hypothesized proportions.

 # basic example
-ifr_chisq_gof_test(hsb, race, c(20, 20, 20 , 140))
+infer_chisq_gof_test(hsb, race, c(20, 20, 20 , 140))

##     Test Statistics     
 ## -----------------------
 ## Chi-Square       5.0286 
@@ -607,7 +607,7 @@ 

Continuity Correction

 # using continuity correction
-ifr_chisq_gof_test(hsb, race, c(20, 20, 20 , 140), correct = TRUE)
+infer_chisq_gof_test(hsb, race, c(20, 20, 20 , 140), correct = TRUE)
##     Test Statistics     
 ## -----------------------
 ## Chi-Square       4.3821 
@@ -636,7 +636,7 @@ 

Examples

Using the hsb data, test if there is a relationship between the type of school attended (schtyp) and students’ gender (female).

-ifr_chisq_assoc_test(hsb, female, schtyp)
+infer_chisq_assoc_test(hsb, female, schtyp)
##                Chi Square Statistics                 
 ## 
 ## Statistics                     DF    Value      Prob 
@@ -651,7 +651,7 @@ 

## ----------------------------------------------------

Using the hsb data, test if there is a relationship between the type of school attended (schtyp) and students’ socio economic status (ses).

-ifr_chisq_assoc_test(hsb, schtyp, ses)
+infer_chisq_assoc_test(hsb, schtyp, ses)
##                Chi Square Statistics                 
 ## 
 ## Statistics                     DF    Value      Prob 
@@ -677,7 +677,7 @@ 

Using the hsb data, test whether variance in reading score is same across race.

 # Using Grouping Variable
-ifr_levene_test(hsb, read, group_var = race)
+infer_levene_test(hsb, read, group_var = race)

##            Summary Statistics             
 ## Levels    Frequency    Mean     Std. Dev  
 ## -----------------------------------------
@@ -704,7 +704,7 @@ 

Using the hsb data, test whether variance is equal for reading, writing and social studies scores.

 # Using Variables
-ifr_levene_test(hsb, read, write, socst)
+infer_levene_test(hsb, read, write, socst)

##            Summary Statistics             
 ## Levels    Frequency    Mean     Std. Dev  
 ## -----------------------------------------
@@ -735,7 +735,7 @@ 

Example

The exam data set contains scores of 15 students for three exams (exam1, exam2, exam3). Test if three exams are equally difficult.

-ifr_cochran_qtest(exam, exam1, exam2, exam3)
+infer_cochran_qtest(exam, exam1, exam2, exam3)
##    Test Statistics     
 ## ----------------------
 ## N                   15 
@@ -762,7 +762,7 @@ 

hb <- hsb hb$himath <- ifelse(hsb$math > 60, 1, 0) hb$hiread <- ifelse(hsb$read > 60, 1, 0) -ifr_mcnemar_test(hb, himath, hiread)

+infer_mcnemar_test(hb, himath, hiread)
##            Controls 
 ## ---------------------------------
 ## Cases       0       1       Total 
@@ -799,7 +799,7 @@ 

 himath <- ifelse(hsb$math > 60, 1, 0)
 hiread <- ifelse(hsb$read > 60, 1, 0)
-ifr_mcnemar_test(table(himath, hiread))
+infer_mcnemar_test(table(himath, hiread))

##            Controls 
 ## ---------------------------------
 ## Cases       0       1       Total 
@@ -835,7 +835,7 @@ 

## ----------------------

Perform the above test using matrix as input.

-ifr_mcnemar_test(matrix(c(135, 18, 21, 26), nrow = 2))
+infer_mcnemar_test(matrix(c(135, 18, 21, 26), nrow = 2))
##            Controls 
 ## ---------------------------------
 ## Cases       0       1       Total 
@@ -881,7 +881,7 @@ 

We will use runs test to check regression residuals for serial correlation.

 # basic example
-ifr_runs_test(hsb, read)
+infer_runs_test(hsb, read)

## Runs Test
 ##  Total Cases:  200 
 ##  Test Value :  50 
@@ -894,7 +894,7 @@ 

## p-value: 0.3956945

 # drop values equal to threshold
-ifr_runs_test(hsb, read, drop = TRUE)
+infer_runs_test(hsb, read, drop = TRUE)
## Runs Test
 ##  Total Cases:  200 
 ##  Test Value :  50 
@@ -907,7 +907,7 @@ 

## p-value: 0.7307676

 # recode data in binary format
-ifr_runs_test(hsb, read, split = TRUE)
+infer_runs_test(hsb, read, split = TRUE)
## Runs Test
 ##  Total Cases:  200 
 ##  Test Value :  50 
@@ -920,7 +920,7 @@ 

## p-value: 0.3956945

 # use mean as threshold
-ifr_runs_test(hsb, read, mean = TRUE)
+infer_runs_test(hsb, read, mean = TRUE)
## Runs Test
 ##  Total Cases:  200 
 ##  Test Value :  52.23 
@@ -933,7 +933,7 @@ 

## p-value: 0.4042329

 # threshold to be used for counting runs
-ifr_runs_test(hsb, read, threshold = 0)
+infer_runs_test(hsb, read, threshold = 0)
## Runs Test
 ##  Total Cases:  200 
 ##  Test Value :  0 
@@ -945,15 +945,6 @@ 

## z Statistic: NaN ## p-value: NaN

- -
-

-Credits

-

The examples and the data set used in the vignette are borrowed from the below listed sources:

-
diff --git a/docs/articles/intro_files/header-attrs-2.8/header-attrs.js b/docs/articles/intro_files/header-attrs-2.8/header-attrs.js new file mode 100644 index 0000000..dd57d92 --- /dev/null +++ b/docs/articles/intro_files/header-attrs-2.8/header-attrs.js @@ -0,0 +1,12 @@ +// Pandoc 2.9 adds attributes on both header and div. We remove the former (to +// be compatible with the behavior of Pandoc < 2.8). +document.addEventListener('DOMContentLoaded', function(e) { + var hs = document.querySelectorAll("div.section[class*='level'] > :first-child"); + var i, h, a; + for (i = 0; i < hs.length; i++) { + h = hs[i]; + if (!/^h[1-6]$/i.test(h.tagName)) continue; // it should be a header h1-h6 + a = h.attributes; + while (a.length > 0) h.removeAttribute(a[0].name); + } +}); diff --git a/docs/authors.html b/docs/authors.html index 2de6996..a6796dd 100644 --- a/docs/authors.html +++ b/docs/authors.html @@ -71,7 +71,7 @@ inferr - 0.3.1 + 0.3.1.9000 diff --git a/docs/index.html b/docs/index.html index 8f8cb69..04c795a 100644 --- a/docs/index.html +++ b/docs/index.html @@ -5,20 +5,55 @@ -Inferential Statistics • inferr +inferr • Tools for Inferential Statistics + + + + + + + + + + + + + + + + + + + + + + - - - + + + + + + +
@@ -33,7 +68,7 @@ inferr - 0.3.1 + 0.3.1.9000
diff --git a/docs/news/index.html b/docs/news/index.html index baa1a45..1ff4c3a 100644 --- a/docs/news/index.html +++ b/docs/news/index.html @@ -71,7 +71,7 @@ inferr - 0.3.0.9000 + 0.3.1.9000 @@ -132,32 +132,16 @@

Changelog

Source: NEWS.md -
-

-inferr 0.3.0.9000 Unreleased +
+

+inferr 0.3.1.9000 Unreleased

-

The following functions were deprecated in 0.3.0 and have been removed:

-
    -
  • binom_calc
  • -
  • binom_test
  • -
  • chisq_gof
  • -
  • chisq_test
  • -
  • cochran_test
  • -
  • ind_ttest
  • -
  • launch_inferr
  • -
  • levene_test
  • -
  • mcnemar_test
  • -
  • os_vartest
  • -
  • owanova
  • -
  • paired_ttest
  • -
  • prop_test
  • -
  • runs_test
  • -
  • ts_prop_calc
  • -
  • ts_prop_grp
  • -
  • ts_prop_test
  • -
  • ttest
  • -
  • var_test
  • -
+
+
+

+inferr 0.3.1 Unreleased +

+

This is a patch release to fix error on R-devel on Debian and Fedora.

diff --git a/docs/pkgdown.yml b/docs/pkgdown.yml index 0e24873..bbe3cf7 100644 --- a/docs/pkgdown.yml +++ b/docs/pkgdown.yml @@ -3,7 +3,7 @@ pkgdown: 1.6.1 pkgdown_sha: ~ articles: intro: intro.html -last_built: 2021-05-28T10:08Z +last_built: 2021-05-28T14:34Z urls: reference: https://inferr.rsquaredacademy.com/reference article: https://inferr.rsquaredacademy.com/articles diff --git a/docs/reference/exam.html b/docs/reference/exam.html index 3a2a054..9b57c65 100644 --- a/docs/reference/exam.html +++ b/docs/reference/exam.html @@ -72,7 +72,7 @@ inferr - 0.3.1 + 0.3.1.9000

diff --git a/docs/reference/hsb.html b/docs/reference/hsb.html index 4d9691d..8a25f9e 100644 --- a/docs/reference/hsb.html +++ b/docs/reference/hsb.html @@ -73,7 +73,7 @@ inferr - 0.3.1 + 0.3.1.9000

diff --git a/docs/reference/index.html b/docs/reference/index.html index 2bcff44..73ede25 100644 --- a/docs/reference/index.html +++ b/docs/reference/index.html @@ -71,7 +71,7 @@ inferr - 0.3.1 + 0.3.1.9000 diff --git a/docs/reference/infer_binom_calc.html b/docs/reference/infer_binom_calc.html index 75f2328..ce7eb6d 100644 --- a/docs/reference/infer_binom_calc.html +++ b/docs/reference/infer_binom_calc.html @@ -73,7 +73,7 @@ inferr - 0.3.0.9000 + 0.3.1.9000 @@ -113,7 +113,7 @@