forked from google/or-tools
-
Notifications
You must be signed in to change notification settings - Fork 9
/
cp_is_fun_sat.py
111 lines (91 loc) · 3.33 KB
/
cp_is_fun_sat.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
#!/usr/bin/env python3
# Copyright 2010-2024 Google LLC
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# [START program]
"""Cryptarithmetic puzzle.
First attempt to solve equation CP + IS + FUN = TRUE
where each letter represents a unique digit.
This problem has 72 different solutions in base 10.
"""
# [START import]
from ortools.sat.python import cp_model
# [END import]
# [START solution_printer]
class VarArraySolutionPrinter(cp_model.CpSolverSolutionCallback):
"""Print intermediate solutions."""
def __init__(self, variables: list[cp_model.IntVar]):
cp_model.CpSolverSolutionCallback.__init__(self)
self.__variables = variables
self.__solution_count = 0
def on_solution_callback(self) -> None:
self.__solution_count += 1
for v in self.__variables:
print(f"{v}={self.value(v)}", end=" ")
print()
@property
def solution_count(self) -> int:
return self.__solution_count
# [END solution_printer]
def main() -> None:
"""solve the CP+IS+FUN==TRUE cryptarithm."""
# Constraint programming engine
# [START model]
model = cp_model.CpModel()
# [END model]
# [START variables]
base = 10
c = model.new_int_var(1, base - 1, "C")
p = model.new_int_var(0, base - 1, "P")
i = model.new_int_var(1, base - 1, "I")
s = model.new_int_var(0, base - 1, "S")
f = model.new_int_var(1, base - 1, "F")
u = model.new_int_var(0, base - 1, "U")
n = model.new_int_var(0, base - 1, "N")
t = model.new_int_var(1, base - 1, "T")
r = model.new_int_var(0, base - 1, "R")
e = model.new_int_var(0, base - 1, "E")
# We need to group variables in a list to use the constraint AllDifferent.
letters = [c, p, i, s, f, u, n, t, r, e]
# Verify that we have enough digits.
assert base >= len(letters)
# [END variables]
# Define constraints.
# [START constraints]
model.add_all_different(letters)
# CP + IS + FUN = TRUE
model.add(
c * base + p + i * base + s + f * base * base + u * base + n
== t * base * base * base + r * base * base + u * base + e
)
# [END constraints]
# Creates a solver and solves the model.
# [START solve]
solver = cp_model.CpSolver()
solution_printer = VarArraySolutionPrinter(letters)
# Enumerate all solutions.
solver.parameters.enumerate_all_solutions = True
# Solve.
status = solver.solve(model, solution_printer)
# [END solve]
# Statistics.
# [START statistics]
print("\nStatistics")
print(f" status : {solver.status_name(status)}")
print(f" conflicts: {solver.num_conflicts}")
print(f" branches : {solver.num_branches}")
print(f" wall time: {solver.wall_time} s")
print(f" sol found: {solution_printer.solution_count}")
# [END statistics]
if __name__ == "__main__":
main()
# [END program]