-
Notifications
You must be signed in to change notification settings - Fork 12
/
Copy pathaprendizaje.bib
1662 lines (1471 loc) · 49.9 KB
/
aprendizaje.bib
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
% Encoding: UTF-8
@Manual{rcore2023,
title = {R: A Language and Environment for Statistical Computing},
author = {{R Core Team}},
organization = {R Foundation for Statistical Computing},
address = {Vienna, Austria. \url{https://www.R-project.org}},
year = {2023},
url = {https://www.R-project.org/},
}
@inproceedings{Hastie2004nips,
author = {Hastie, Trevor and Rosset, Saharon and Tibshirani, Robert and Zhu, Ji},
booktitle = {NIPS},
ee = {http://papers.nips.cc/paper/2713-the-entire-regularization-path-for-the-support-vector-machine},
pages = {561-568},
title = {The Entire Regularization Path for the Support Vector Machine.},
url = {http://dblp.uni-trier.de/db/conf/nips/nips2004.html#HastieRTZ04},
year = 2004
}
@book{xie2015,
author = {Yihui Xie},
publisher = {Chapman and Hall/CRC},
title = {Dynamic Documents with {R} and knitr},
year = {2015},
address = {Boca Raton, Florida},
edition = {2a.},
note = {ISBN 978-1498716963},
doi = {10.1201/b15166},
url = {http://yihui.name/knitr/},
}
@book{xie2018r,
author = {Xie, Yihui and Allaire, JJ and Grolemund, Garrett},
publisher = {CRC Press. \url{https://bookdown.org/yihui/rmarkdown}},
title = {R Markdown: The Definitive Guide},
year = {2018},
doi = {10.1201/9781138359444},
url = {https://bookdown.org/yihui/rmarkdown/},
}
@book{xie2016bookdown,
author = {Xie, Yihui},
publisher = {Chapman and Hall/CRC},
title = {Bookdown: Authoring Books and Technical Documents with R Markdown},
year = {2016},
doi = {10.1201/9781315204963},
}
@book{james2021introduction,
title={An Introduction to Statistical Learning: With Applications in R},
edition = {2a.},
author = {James, Gareth and Witten, Daniela and Hastie, Trevor and Tibshirani, Robert},
isbn={9781071614181},
url={https://www.statlearning.com},
year={2021},
publisher={Springer. \url{https://www.statlearning.com}}
}
@book{kuhn2013applied,
author = {Kuhn, Max and Johnson, Kjell},
publisher = {Springer. \url{http://appliedpredictivemodeling.com}},
title = {Applied predictive modeling},
year = {2013},
doi = {10.1007/978-1-4614-6849-3},
url = {http://appliedpredictivemodeling.com},
}
@book{williams2011data,
title={Data mining with Rattle and R: The art of excavating data for knowledge discovery},
author={Williams, Graham},
year={2011},
publisher={Springer Science \& Business Media}
}
@book{bellman1961adaptive,
author = {Bellman, Richard},
publisher = {Princeton University Press},
title = {Adaptive Control Processes: a guided tour},
year = {1961},
}
@book{burger2018introduction,
author={Burger, Scott V},
title={Introduction to Machine Learning with R: Rigorous Mathematical Analysis},
isbn={9781491976395},
lccn={2018303264},
year={2018},
publisher={O'Reilly Media}
}
@book{breiman1984classification,
title={Classification and Regression Trees},
author={Breiman, Leo and Friedman, Jerome and Stone, Charles J and Olshen, Richard A},
isbn={9780412048418},
lccn={83019708},
year={1984},
publisher={Taylor and Francis}
}
@Book{chollet2018deep,
author = {Chollet, Fran{\c{c}}ois and Allaire, Joseph J},
publisher = {Manning Publications},
title = {Deep Learning with R},
year = {2018},
isbn = {9781617295546},
lccn = {2018285360},
}
@book{de1978practical,
author = {De Boor, Carl and De Boor, Carl},
publisher = {Springer-Verlag},
title = {A practical guide to splines},
year = {1978},
doi = {10.1007/978-1-4612-6333-3}
}
@book{efron2016computer,
author = {Efron, Bradley and Hastie, Trevor},
publisher = {Cambridge University Press. \url{https://hastie.su.domains/CASI}},
title = {Computer Age Statistical Inference: Algorithms, Evidence and Data Science},
year = {2016},
volume = {5},
doi = {10.1017/cbo9781316576533},
url = {https://hastie.su.domains/CASI//},
}
@book{fan1996,
title={Local Polynomial Modelling and Its Applications},
author={Fan, J and Gijbels, I},
isbn={9780412983214},
lccn={96083481},
year={1996},
publisher={Chapman and Hall}
}
@book{faraway2014linear,
author = {Faraway, J.J.},
title = {Linear Models with R},
year = {2016},
edition = {2a.},
isbn = {9781439887349},
publisher = {Chapman \& Hall/CRC}
}
@book{faraway2016extending,
title={Extending the linear model with R: generalized linear, mixed effects and nonparametric regression models},
author={Faraway, Julian J},
year={2016},
publisher={CRC press}
}
@book{fernandez2023simbook,
title={Técnicas de simulación y remuestreo},
author={Fern\'andez-Casal, Rub\'en and Cao, Ricardo and Costa, Juli\'an},
year={2023},
publisher={\url{https://rubenfcasal.github.io/simbook}}
}
@book{fernandez2022intror,
title={Introducción al Análisis de Datos con R},
author={Fern\'andez-Casal, Rub\'en and Roca-Pardi\~nas, Javier and Costa, Juli\'an and Oviedo-de la Fuente, Manuel},
year={2022},
isbn = {9788409418237},
publisher={\url{https://rubenfcasal.github.io/intror}}
}
@book{hair1998multivariate,
title={Multivariate Data Analysis},
author={Hair, Joseph F and Anderson, Rolph E and Tatham, Ronald L and Black, William},
year={1998},
isbn = {0138948585},
publisher = {Prentice Hall}
}
@book{hastie1990generalized,
author = {Hastie, Trevor and Tibshirani, Robert},
title={Generalized Additive Models},
isbn={9780203753781},
series={Monographs on Statistics and Applied Probability},
year={1990},
publisher={Chapman and Hall},
doi = {10.1201/9780203753781}
}
@book{hastie2009friedman,
author = {Hastie, Trevor and Tibshirani, Robert and Friedman, Jerome},
publisher = {Springer},
title = {The Elements of Statistical Learning: Data Mining, Inference, and Prediction},
year = {2013},
edition = {2a.},
isbn = {9780387216065},
series = {Springer Series in Statistics},
lccn = {2001031433},
}
@inbook{hastie1991generalized,
title={Generalized linear models},
author={Hastie, Trevor and Pregibon, Daryl},
booktitle={Statistical models in S},
editor={Chambers, J.M. and Hastie, T.},
chapter=7,
pages={195--247},
year={1991},
publisher={Routledge}
}
@book{mccullagh2019generalized,
title={Generalized linear models},
author={McCullagh, Peter},
year={2019},
publisher={Routledge}
}
@book{hastie2019statistical,
author = {Hastie, Trevor and Tibshirani, Robert and Wainwright, Martin},
publisher = {Chapman and Hall/CRC},
title = {Statistical Learning with Sparsity: The Lasso and Generalizations},
year = {2015},
isbn = {9781498712170},
series = {Chapman \& Hall/CRC Monographs on Statistics \& Applied Probability},
lccn = {2015014842},
url = {https://web.stanford.edu/~hastie/StatLearnSparsity},
}
@book{irizarry2019introduction,
author = {Irizarry, Rafael A},
publisher = {CRC Press. \url{https://rafalab.github.io/dsbook}},
title = {Introduction to data science: data analysis and prediction algorithms with R},
year = {2019},
doi = {10.1201/9780429341830},
url = {https://rafalab.github.io/dsbook},
}
@book{molnar2020interpretable,
title={Interpretable Machine Learning: A Guide for Making Black Box Models Explainable},
author={Molnar, Christoph},
year={2023},
publisher={Lulu.com. \url{https://christophm.github.io/interpretable-ml-book}},
url ={https://christophm.github.io/interpretable-ml-book}
}
@book{torgo2011data,
title={Data mining with R: learning with case studies},
author={Torgo, Luis},
year={2011},
publisher={Chapman and Hall/CRC}
}
@book{vapnik2000nature,
title={The Nature of Statistical Learning Theory},
author={Vapnik, V.N.},
isbn={9781475732641},
lccn={95024205},
url={https://link.springer.com/book/10.1007/978-1-4757-3264-1},
year={2000},
publisher={Springer}
}
@book{vapnik1998statistical,
title={Statistical Learning Theory},
author={Vapnik, V.N.},
isbn={9780471030034},
lccn={97037075},
url={https://www.wiley.com/en-us/Statistical+Learning+Theory-p-9780471030034},
year={1998},
publisher={Wiley}
}
@article{werbos1974new,
title={New tools for prediction and analysis in the behavioral sciences},
author={Werbos, Paul},
journal={Tesis doctoral, Harvard University},
year={1974}
}
@book{wickham2016r,
title={R for Data Science: Import, Tidy, Transform, Visualize, and Model Data},
isbn={9781491910344},
lccn={2017300238},
author={Wickham, Hadley and Grolemund, Garrett},
year={2016},
publisher={O'Reilly. \url{https://r4ds.had.co.nz}},
url = {https://r4ds.had.co.nz/}
}
@book{wood2017generalized,
title={Generalized Additive Models: An Introduction with R},
edition = {2a.},
author={Wood, Simon N},
isbn={9781498728348},
year={2017},
publisher={Chapman \& Hall/CRC}
}
@Article{agor2019feature,
author = {Agor, Joseph and {\"O}zalt{\i}n, Osman Y},
journal = {Computers and Operations Research},
title = {Feature selection for classification models via bilevel optimization},
year = {2019},
pages = {156--168},
volume = {106},
doi = {10.1016/j.cor.2018.05.005},
publisher = {Elsevier},
}
@book{becker2021mlr3,
author = {Becker, Marc and Binder, Martin and Bischl, Bernd and Lang, Michel and Pfisterer, Florian and Reich, Nicholas G and Richter, Jakob and Schratz, Patrick and Sonabend, Raphael and Pulatov, Damir},
title = {mlr3 book},
year = {2021},
publisher = {\url{https://mlr3book.mlr-org.com}}
}
@article{berntsson1986comparison,
author = {Berntsson, Peder and Wold, Svante},
journal = {Quantitative Structure-Activity Relationships},
title = {Comparison between x-ray crystallographic data and physicochemical parameters with respect to their information about the calcium channel antagonist activity of 4-phenyl-1, 4-dihydropyridines},
year = {1986},
number = {2},
pages = {45--50},
volume = {5},
doi = {10.1002/qsar.19860050202},
publisher = {Wiley Online Library},
}
@article{biecek2018dalex,
title={{DALEX: explainers for complex predictive models in R}},
author={Biecek, Przemys{\l}aw},
journal={The Journal of Machine Learning Research},
volume={19},
number={1},
pages={3245--3249},
year={2018},
publisher={JMLR. org},
url={http://www.jmlr.org/papers/volume19/18-416/18-416.pdf}
}
@InProceedings{boser1992training,
author = {Boser, Bernhard E and Guyon, Isabelle M and Vapnik, Vladimir N},
booktitle = {Proceedings of the fifth annual workshop on Computational learning theory},
title = {A training algorithm for optimal margin classifiers},
year = {1992},
pages = {144--152},
doi = {10.1145/130385.130401},
}
@article{breiman1996bagging,
author = {Breiman, Leo},
journal = {Machine Learning},
title = {Bagging predictors},
year = {1996},
number = {2},
pages = {123--140},
volume = {24},
doi = {10.1007/bf00058655},
publisher = {Springer},
}
@article{breiman2001random,
author = {Breiman, Leo},
journal = {Machine Learning},
title = {Random forests},
year = {2001},
number = {1},
pages = {5--32},
volume = {45},
publisher = {Springer},
}
@article{breiman2001statistical,
author = {Breiman, Leo},
journal = {Statistical Science},
title = {Statistical modeling: The two cultures (with comments and a rejoinder by the author)},
year = {2001},
number = {3},
pages = {199--231},
volume = {16},
doi = {10.1214/ss/1009213726},
publisher = {Institute of Mathematical Statistics},
}
@InProceedings{chen2016xgboost,
author = {Chen, Tianqi and Guestrin, Carlos},
booktitle = {Proceedings of the 22nd acm sigkdd international conference on knowledge discovery and data mining},
title = {Xgboost: A scalable tree boosting system},
year = {2016},
pages = {785--794},
doi = {10.1145/2939672.2939785},
}
@Article{comon1994independent,
author = {Comon, Pierre},
journal = {Signal Processing},
title = {Independent component analysis, a new concept?},
year = {1994},
number = {3},
pages = {287--314},
volume = {36},
doi = {10.1016/0165-1684(94)90029-9},
publisher = {Elsevier},
}
@article{cortes1995support,
author = {Cortes, Corinna and Vapnik, Vladimir},
journal = {Machine Learning},
title = {Support-vector networks},
year = {1995},
number = {3},
pages = {273--297},
volume = {20},
doi = {10.1007/bf00994018},
publisher = {Springer},
}
@Article{cortez2009modeling,
author = {Cortez, Paulo and Cerdeira, Ant{\'o}nio and Almeida, Fernando and Matos, Telmo and Reis, Jos{\'e}},
journal = {Decision Support Systems},
title = {Modeling wine preferences by data mining from physicochemical properties},
year = {2009},
number = {4},
pages = {547--553},
volume = {47},
doi = {10.1016/j.dss.2009.05.016},
publisher = {Elsevier},
}
@Article{craven1978smoothing,
author = {Craven, Peter and Wahba, Grace},
journal = {Numerische Mathematik},
title = {Smoothing noisy data with spline functions},
year = {1978},
number = {4},
pages = {377--403},
volume = {31},
doi = {10.1007/bf01404567},
publisher = {Springer},
}
@Article{culp2006ada,
author = {Culp, Mark and Johnson, Kjell and Michailidis, George},
journal = {Journal of Statistical Software},
title = {ada: An R Package for Stochastic Boosting},
year = {2006},
number = {2},
pages = {1–27},
volume = {17},
doi = {10.18637/jss.v017.i02},
url = {https://www.jstatsoft.org/article/view/v017i02},
}
@article{dietterich2000experimental,
title={An experimental comparison of three methods for constructing ensembles of decision trees: Bagging, boosting, and randomization},
author={Dietterich, Thomas G},
journal={Machine Learning},
volume={40},
number={2},
pages={139--157},
year={2000},
publisher={Springer}
}
@InProceedings{drucker1997support,
author = {Drucker, Harris and Burges, Chris JC and Kaufman, Linda and Smola, Alex and Vapnik, Vladimir},
booktitle = {Advances in Neural Information Processing Systems},
title = {Support Vector Regression Machines},
year = {1997},
pages = {155--161},
publisher = {MIT Press}
}
@Article{dunson2018statistics,
author = {Dunson, David B},
journal = {Statistics and Probability Letters},
title = {Statistics in the big data era: Failures of the machine},
year = {2018},
pages = {4--9},
volume = {136},
doi = {10.1016/j.spl.2018.02.028},
publisher = {Elsevier},
}
@article{efron2004least,
author = {Efron, Bradley and Hastie, Trevor and Johnstone, Iain and Tibshirani, Robert},
journal = {The Annals of Statistics},
title = {Least angle regression},
year = {2004},
number = {2},
pages = {407--499},
volume = {32},
doi = {10.1214/009053604000000067},
publisher = {Institute of Mathematical Statistics},
}
@Article{eilers1996flexible,
author = {Eilers, Paul HC and Marx, Brian D},
journal = {Statistical Science},
title = {Flexible smoothing with B-splines and penalties},
year = {1996},
number = {2},
pages = {89--121},
volume = {11},
doi = {10.1214/ss/1038425655},
publisher = {Institute of Mathematical Statistics},
url = {https://www.jstor.org/stable/pdf/2246049.pdf},
}
@article{fisher1936use,
author = {Fisher, Ronald A},
journal = {Annals of eugenics},
title = {The use of multiple measurements in taxonomic problems},
year = {1936},
number = {2},
pages = {179--188},
volume = {7},
doi = {10.1111/j.1469-1809.1936.tb02137.x},
publisher = {Wiley Online Library},
}
@inproceedings{freund1996schapire,
title={{Schapire R: Experiments with a new boosting algorithm}},
author={Freund, Yoav and Schapire, Robert E},
booktitle={Thirteenth International Conference on ML},
year={1996},
organization={ICML}
}
@article{friedman1989regularized,
author = {Friedman, Jerome},
journal = {Journal of the American Statistical Association},
title = {Regularized discriminant analysis},
year = {1989},
number = {405},
pages = {165--175},
volume = {84},
doi = {10.1080/01621459.1989.10478752},
publisher = {Taylor \& Francis},
}
@article{friedman1991multivariate,
author = {Friedman, Jerome},
journal = {The Annals of Statistics},
title = {{Multivariate Adaptive Regression Splines}},
year = {1991},
number = {1},
pages = {1--67},
volume = {19},
doi = {10.1214/aos/1176347963},
keywords = {AID, CART, multivariable function approximation, multivariate smoothing, Nonparametric multiple regression, recursive partitioning, splines, statistical learning neural networks},
publisher = {Institute of Mathematical Statistics},
}
@article{friedman2001greedy,
title={Greedy function approximation: a gradient boosting machine},
author={Friedman, Jerome},
journal={The Annals of Statistics},
pages={1189--1232},
year={2001},
publisher={JSTOR},
url = {https://projecteuclid.org/euclid.aos/1013203451},
doi = {10.1214/aos/1013203451}
}
@article{friedman2002stochastic,
title={Stochastic gradient boosting},
author={Friedman, Jerome},
journal={Computational Statistics \& data analysis},
volume={38},
number={4},
pages={367--378},
year={2002},
publisher={Elsevier},
url = {https://www.sciencedirect.com/science/article/pii/S0167947301000652},
doi = {10.1016/S0167-9473(01)00065-2}
}
@article{friedman2000additive,
author = {Friedman, Jerome and Hastie, Trevor and Tibshirani, Robert},
journal = {The Annals of Statistics},
title = {Additive logistic regression: a statistical view of boosting (with discussion and a rejoinder by the authors)},
year = {2000},
number = {2},
pages = {337--407},
volume = {28},
doi = {10.1214/aos/1016218223},
publisher = {Institute of Mathematical Statistics},
url = {https://projecteuclid.org/euclid.aos/1016218223},
}
@article{friedman2008predictive,
author = {Friedman, Jerome and Popescu, Bogdan E},
journal = {The Annals of Applied Statistics},
title = {Predictive learning via rule ensembles},
year = {2008},
number = {3},
pages = {916--954},
volume = {2},
doi = {10.1214/07-aoas148},
publisher = {Institute of Mathematical Statistics},
}
@article{friedman1974projection,
author = {Friedman, Jerome and Tukey, John},
journal = {IEEE Transactions on computers},
title = {A projection pursuit algorithm for exploratory data analysis},
year = {1974},
number = {9},
pages = {881--890},
volume = {100},
doi = {10.1109/t-c.1974.224051},
publisher = {IEEE},
}
@article{friedman1981projection,
author = {Friedman, Jerome and Stuetzle, Werner},
journal = {Journal of the American Statistical Association},
title = {Projection pursuit regression},
year = {1981},
number = {376},
pages = {817--823},
volume = {76},
doi = {10.1080/01621459.1981.10477729},
publisher = {Taylor \& Francis},
}
@article{goldstein2015peeking,
author = {Alex Goldstein and Adam Kapelner and Justin Bleich and Emil Pitkin},
journal = {Journal of Computational and Graphical Statistics},
title = {Peeking Inside the Black Box: Visualizing Statistical Learning With Plots of Individual Conditional Expectation},
year = {2015},
number = {1},
pages = {44-65},
volume = {24},
doi = {10.1080/10618600.2014.907095},
publisher = {Taylor & Francis},
}
@article{greenwell2020dblp,
author = {Brandon M. Greenwell},
title = {{pdp: An R Package for Constructing Partial Dependence Plots}},
year = {2017},
journal = {{The R Journal}},
doi = {10.32614/RJ-2017-016},
pages = {421--436},
volume = {9},
number = {1}
}
@article{hastie1996fisher,
author = {Hastie, Trevor and Tibshirani, Robert},
journal = {Journal of the Royal Statistical Society. Series B (Methodological)},
title = {Discriminant Analysis by Gaussian Mixtures},
year = {1996},
issn = {00359246},
number = {1},
pages = {155--176},
volume = {58},
doi = {10.1111/j.2517-6161.1996.tb02073.x},
publisher = {[Royal Statistical Society, Wiley]},
url = {http://www.jstor.org/stable/2346171},
}
@article{hastie2004entire,
author = {Hastie, Trevor and Rosset, Saharon and Tibshirani, Robert and Zhu, Ji},
journal = {Journal of Machine Learning Research},
title = {The entire regularization path for the support vector machine},
year = {2004},
pages = {1391--1415},
volume = {5},
}
@article{hoerl1970ridge,
author = {Hoerl, Arthur E and Kennard, Robert W},
journal = {Technometrics},
title = {Ridge regression: Biased estimation for nonorthogonal problems},
year = {1970},
number = {1},
pages = {55--67},
volume = {12},
doi = {10.1080/00401706.2000.10485983},
publisher = {Taylor \& Francis},
}
@article{hothorn2006unbiased,
author = {Hothorn, Torsten and Hornik, Kurt and Zeileis, Achim},
journal = {Journal of Computational and Graphical Statistics},
title = {Unbiased recursive partitioning: A conditional inference framework},
year = {2006},
number = {3},
pages = {651--674},
volume = {15},
doi = {10.1198/106186006x133933},
publisher = {Taylor \& Francis},
}
@article{ichimura1993,
author = {Hidehiko Ichimura},
journal = {Journal of Econometrics},
title = {Semiparametric least squares (SLS) and weighted SLS estimation of single-index models},
year = {1993},
issn = {0304-4076},
number = {1},
pages = {71-120},
volume = {58},
doi = {10.1016/0304-4076(93)90114-K},
}
@article{kass1980exploratory,
author = {Kass, Gordon V},
journal = {Journal of the Royal Statistical Society: Series C (Applied Statistics)},
title = {An exploratory technique for investigating large quantities of categorical data},
year = {1980},
number = {2},
pages = {119--127},
volume = {29},
doi = {10.2307/2986296},
publisher = {Wiley Online Library},
}
@article{kernlab2004,
author = {Alexandros Karatzoglou and Alexandros Smola and Kurt Hornik and Achim Zeileis},
title = {kernlab - An S4 Package for Kernel Methods in R},
journal = {Journal of Statistical Software},
volume = {11},
number = {9},
year = {2004},
keywords = {},
issn = {1548-7660},
pages = {1--20},
doi = {10.18637/jss.v011.i09},
}
@article{kearns_cryptographic_1994,
author = {Kearns, Michael and Valiant, Leslie},
journal = {Journal of the ACM},
title = {Cryptographic limitations on learning {Boolean} formulae and finite automata},
year = {1994},
number = {1},
pages = {67--95},
volume = {41},
doi = {10.1145/174644.174647},
}
@InProceedings{kruskal1969toward,
author = {Kruskal, Joseph B},
booktitle = {Statistical Computation},
title = {Toward a practical method which helps uncover the structure of a set of multivariate observations by finding the linear transformation which optimizes a new “index of condensation”},
year = {1969},
organization = {Elsevier},
pages = {427--440},
doi = {10.1016/b978-0-12-498150-8.50024-0},
}
@book{kuhn2022tidy,
title={Tidy Modeling with R},
author={Kuhn, M. and Silge, J.},
isbn={9781492096450},
url={https://www.tmwr.org},
year={2022},
publisher={O'Reilly. \url{https://www.tmwr.org}}
}
@article{kuhn2008building,
author = {Max Kuhn},
journal = {Journal of Statistical Software},
title = {Building Predictive Models in {R} Using the caret Package},
year = {2008},
issn = {1548-7660},
number = {5},
pages = {1--26},
volume = {28},
doi = {10.18637/jss.v028.i05},
url = {https://www.jstatsoft.org/v028/i05},
}
@article{kvaalseth1985cautionary,
author = {Kv{\aa}lseth, Tarald O},
journal = {The American Statistician},
title = {Cautionary note about {R2}},
year = {1985},
number = {4},
pages = {279--285},
volume = {39},
doi = {10.1080/00031305.1985.10479448},
publisher = {Taylor \& Francis},
}
@article{kvaalseth1985weighted,
author = {Kv{\aa}lseth, Tarald O},
journal = {Bulletin of the Psychonomic Society},
title = {Weighted conditional kappa},
year = {1985},
number = {6},
pages = {503--505},
volume = {23},
doi = {10.3758/bf03329866},
publisher = {Springer},
}
@Article{lauro1996computational,
author = {Lauro, Carlo},
journal = {Computational Statistics \& Data Analysis},
title = {Computational statistics or statistical computing, is that the question?},
year = {1996},
issn = {0167-9473},
number = {1},
pages = {191-193},
volume = {23},
doi = {10.1016/0167-9473(96)88920-1}
}
@article{liaw2002classification,
title={Classification and Regression by {randomForest}},
author={Liaw, Andy and Wiener, Matthew},
journal={R News},
volume={2},
number={3},
pages={18--22},
year={2002},
url = {https://www.r-project.org/doc/Rnews/Rnews_2002-3.pdf}
}
@article{loh2002regression,
author = {Loh, Wei-Yin},
journal = {Statistica Sinica},
title = {Regression tress with unbiased variable selection and interaction detection},
year = {2002},
pages = {361--386},
}
@article{massy1965principal,
author = {Massy, William F},
journal = {Journal of the American Statistical Association},
title = {Principal components regression in exploratory statistical research},
year = {1965},
number = {309},
pages = {234--256},
volume = {60},
doi = {10.1080/01621459.1965.10480787},
publisher = {Taylor \& Francis},
}
@article{mcculloch1943logical,
author = {McCulloch, Warren S and Pitts, Walter},
journal = {The bulletin of Mathematical Biophysics},
title = {A logical calculus of the ideas immanent in nervous activity},
year = {1943},
number = {4},
pages = {115--133},
volume = {5},
doi = {10.1007/bf02459570},
publisher = {Springer},
}
@Manual{R-e1071,
title = {{e1071: Misc Functions of the Department of Statistics, Probability
Theory Group (Formerly: E1071), TU Wien}},
author = {David Meyer and Evgenia Dimitriadou and Kurt Hornik and Andreas Weingessel and Friedrich Leisch},
year = {2020},
note = {R package version 1.7-4},
url = {https://cran.r-project.org/package=e1071},
}
@article{Mevik2007pls,
author = {Björn-Helge Mevik and Ron Wehrens},
title = {The pls Package: Principal Component and Partial Least Squares Regression in {R}},
journal = {Journal of Statistical Software},
volume = {18},
number = {2},
year = {2007},
keywords = {},
issn = {1548-7660},
pages = {1--23},
doi = {10.18637/jss.v018.i02},
url = {https://www.jstatsoft.org/v018/i02}
}
@book{quinlan1993c4,
title={C4.5: Programs for Machine Learning},
author={Quinlan, John Ross},
isbn={9781558602380},
lccn={92032653},
year={1993},
publisher={Elsevier}
}
@article{quinlan1986induction,
title={Induction of decision trees},
author={Quinlan, John Ross},
journal={Machine Learning},
volume={1},
pages={81--106},
year={1986}
}
@inproceedings{quinlan1992learning,
title={Learning with continuous classes},
author={Quinlan, John Ross},
booktitle={5th Australian joint conference on artificial intelligence},
pages={343--348},
year={1992},
organization={World Scientific}
}
@article{tibshirani1996regression,
author = {Tibshirani, Robert},
journal = {Journal of the Royal Statistical Society: Series B (Methodological)},
title = {Regression shrinkage and selection via the lasso},
year = {1996},
number = {1},
pages = {267--288},
volume = {58},
doi = {10.1111/j.2517-6161.1996.tb02080.x},
publisher = {Wiley Online Library},
}
@article{shannon1948mathematical,
author = {Shannon, Claude Elwood},
journal = {The Bell System Technical Journal},
title = {A mathematical theory of communication},
year = {1948},
number = {3},
pages = {379--423},
volume = {27},
doi = {10.2307/410457},
}
@book{spinoza1667ethics,
title={Ethics},
author={Spinoza, Baruch},
year={1677}
}
@article{strumbelj2010efficient,
title={An efficient explanation of individual classifications using game theory},
author={Strumbelj, Erik and Kononenko, Igor},
journal={The Journal of Machine Learning Research},
volume={11},
pages={1--18},
year={2010},
publisher={JMLR. org}
}
@article{valiant1984theory,
author = {Valiant, Leslie G},
journal = {Communications of the ACM},
title = {A Theory of the Learnable},
year = {1984},
number = {11},
pages = {1134--1142},
volume = {27},
doi = {10.1145/800057.808710},
publisher = {ACM New York, NY, USA},
}
@inproceedings{vinayak2015dart,
title={Dart: Dropouts meet multiple additive regression trees},
author={Vinayak, Rashmi Korlakai and Gilad-Bachrach, Ran},
booktitle={Artificial Intelligence and Statistics},
pages={489--497},
year={2015},
organization={PMLR}
}
@article{welch1939note,
author = {Welch, Bernard L},
journal = {Biometrika},
title = {Note on Discriminant Functions},
year = {1939},
number = {1/2},
pages = {218--220},
volume = {31},
doi = {10.2307/2334985},
publisher = {JSTOR},
}
@InCollection{wold1983multivariate,
author = {Wold, Svante and Martens, Harold and Wold, Herman},
booktitle = {Matrix pencils},
publisher = {Springer},
title = {The multivariate calibration problem in chemistry solved by the {PLS} method},
year = {1983},
pages = {286--293},
doi = {10.1007/bfb0062108},
}
@article{wolpert1997no,
author = {Wolpert, D.H. and Macready, W.G.},
journal = {IEEE Transactions on Evolutionary Computation},
title = {No free lunch theorems for optimization},
year = {1997},
number = {1},
pages = {67-82},