-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmaximum_matrix_sum.py
56 lines (49 loc) · 2.13 KB
/
maximum_matrix_sum.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
# https://leetcode.com/problems/maximum-matrix-sum/description/
# 1975. Maximum Matrix Sum
# You are given an n x n integer matrix. You can do the following operation any number of times:
# Choose any two adjacent elements of matrix and multiply each of them by -1.
# Two elements are considered adjacent if and only if they share a border.
# Your goal is to maximize the summation of the matrix's elements. Return the maximum sum of the matrix's elements using the operation mentioned above.
# Example 1:
# Input: matrix = [[1,-1],[-1,1]]
# Output: 4
# Explanation: We can follow the following steps to reach sum equals 4:
# - Multiply the 2 elements in the first row by -1.
# - Multiply the 2 elements in the first column by -1.
# Example 2:
# Input: matrix = [[1,2,3],[-1,-2,-3],[1,2,3]]
# Output: 16
# Explanation: We can follow the following step to reach sum equals 16:
# - Multiply the 2 last elements in the second row by -1.
# Constraints:
# n == matrix.length == matrix[i].length
# 2 <= n <= 250
# -105 <= matrix[i][j] <= 105
from typing import List
# from numpy import inf
class Solution:
def maxMatrixSum(self, matrix: List[List[int]]) -> int:
'''
Maximum Matrix Sum
для ЧЕТНОГО количества отрицательных чисел можем обойтись перемножением на [-1,-1] любое количество раз
для нечетного количества отрицательных чисел надо найти минимальное число в матрице, чтобы его заминусовать
'''
total = cnt = 0
# mi = inf
mi = float('inf')
for row in matrix:
for v in row:
total += abs(v)
mi = min(mi, abs(v))
if v < 0:
cnt += 1
if cnt % 2 == 0 or mi == 0:
return total
return total - mi * 2
if __name__ == "__main__":
matrix = [[1,-1],[-1,1]]
print(Solution().maxMatrixSum(matrix))
# Output: 4
matrix = [[1,2,3],[-1,-2,-3],[1,2,3]]
print(Solution().maxMatrixSum(matrix))
# Output: 16