diff --git a/compiler/rustc_mir_build/src/thir/pattern/check_match.rs b/compiler/rustc_mir_build/src/thir/pattern/check_match.rs index 397706851cb79..6ec602ff59b9c 100644 --- a/compiler/rustc_mir_build/src/thir/pattern/check_match.rs +++ b/compiler/rustc_mir_build/src/thir/pattern/check_match.rs @@ -1,6 +1,6 @@ -use super::usefulness::Usefulness::*; use super::usefulness::{ - compute_match_usefulness, expand_pattern, MatchArm, MatchCheckCtxt, UsefulnessReport, + compute_match_usefulness, expand_pattern, MatchArm, MatchCheckCtxt, Reachability, + UsefulnessReport, }; use super::{PatCtxt, PatKind, PatternError}; @@ -398,10 +398,11 @@ fn report_arm_reachability<'p, 'tcx>( report: &UsefulnessReport<'p, 'tcx>, source: hir::MatchSource, ) { + use Reachability::*; let mut catchall = None; for (arm_index, (arm, is_useful)) in report.arm_usefulness.iter().enumerate() { match is_useful { - NotUseful => { + Unreachable => { match source { hir::MatchSource::WhileDesugar => bug!(), @@ -430,17 +431,16 @@ fn report_arm_reachability<'p, 'tcx>( hir::MatchSource::AwaitDesugar | hir::MatchSource::TryDesugar => {} } } - Useful(unreachables) if unreachables.is_empty() => {} + Reachable(unreachables) if unreachables.is_empty() => {} // The arm is reachable, but contains unreachable subpatterns (from or-patterns). - Useful(unreachables) => { - let mut unreachables: Vec<_> = unreachables.iter().collect(); + Reachable(unreachables) => { + let mut unreachables = unreachables.clone(); // Emit lints in the order in which they occur in the file. unreachables.sort_unstable(); for span in unreachables { unreachable_pattern(cx.tcx, span, arm.hir_id, None); } } - UsefulWithWitness(_) => bug!(), } if !arm.has_guard && catchall.is_none() && pat_is_catchall(arm.pat) { catchall = Some(arm.pat.span); diff --git a/compiler/rustc_mir_build/src/thir/pattern/deconstruct_pat.rs b/compiler/rustc_mir_build/src/thir/pattern/deconstruct_pat.rs index e67166c99c8da..3a67eeff92c31 100644 --- a/compiler/rustc_mir_build/src/thir/pattern/deconstruct_pat.rs +++ b/compiler/rustc_mir_build/src/thir/pattern/deconstruct_pat.rs @@ -723,8 +723,6 @@ impl<'tcx> Constructor<'tcx> { where 'tcx: 'a, { - debug!("Constructor::split({:#?})", self); - match self { Wildcard => { let mut split_wildcard = SplitWildcard::new(pcx); diff --git a/compiler/rustc_mir_build/src/thir/pattern/usefulness.rs b/compiler/rustc_mir_build/src/thir/pattern/usefulness.rs index d7c08a2d1af6b..f3f21b903ea08 100644 --- a/compiler/rustc_mir_build/src/thir/pattern/usefulness.rs +++ b/compiler/rustc_mir_build/src/thir/pattern/usefulness.rs @@ -288,6 +288,7 @@ use super::{Pat, PatKind}; use super::{PatternFoldable, PatternFolder}; use rustc_data_structures::captures::Captures; +use rustc_data_structures::fx::FxHashMap; use rustc_data_structures::sync::OnceCell; use rustc_arena::TypedArena; @@ -344,6 +345,12 @@ pub(super) struct PatCtxt<'a, 'p, 'tcx> { pub(super) is_top_level: bool, } +impl<'a, 'p, 'tcx> fmt::Debug for PatCtxt<'a, 'p, 'tcx> { + fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { + f.debug_struct("PatCtxt").field("ty", &self.ty).finish() + } +} + crate fn expand_pattern<'tcx>(pat: Pat<'tcx>) -> Pat<'tcx> { LiteralExpander.fold_pattern(&pat) } @@ -379,11 +386,32 @@ impl<'tcx> Pat<'tcx> { pub(super) fn is_wildcard(&self) -> bool { matches!(*self.kind, PatKind::Binding { subpattern: None, .. } | PatKind::Wild) } + + fn is_or_pat(&self) -> bool { + matches!(*self.kind, PatKind::Or { .. }) + } + + /// Recursively expand this pattern into its subpatterns. Only useful for or-patterns. + fn expand_or_pat(&self) -> Vec<&Self> { + fn expand<'p, 'tcx>(pat: &'p Pat<'tcx>, vec: &mut Vec<&'p Pat<'tcx>>) { + if let PatKind::Or { pats } = pat.kind.as_ref() { + for pat in pats { + expand(pat, vec); + } + } else { + vec.push(pat) + } + } + + let mut pats = Vec::new(); + expand(self, &mut pats); + pats + } } /// A row of a matrix. Rows of len 1 are very common, which is why `SmallVec[_; 2]` /// works well. -#[derive(Debug, Clone)] +#[derive(Clone)] struct PatStack<'p, 'tcx> { pats: SmallVec<[&'p Pat<'tcx>; 2]>, /// Cache for the constructor of the head @@ -419,23 +447,14 @@ impl<'p, 'tcx> PatStack<'p, 'tcx> { self.pats.iter().copied() } - // If the first pattern is an or-pattern, expand this pattern. Otherwise, return `None`. - fn expand_or_pat(&self) -> Option> { - if self.is_empty() { - None - } else if let PatKind::Or { pats } = &*self.head().kind { - Some( - pats.iter() - .map(|pat| { - let mut new_patstack = PatStack::from_pattern(pat); - new_patstack.pats.extend_from_slice(&self.pats[1..]); - new_patstack - }) - .collect(), - ) - } else { - None - } + // Recursively expand the first pattern into its subpatterns. Only useful if the pattern is an + // or-pattern. Panics if `self` is empty. + fn expand_or_pat<'a>(&'a self) -> impl Iterator> + Captures<'a> { + self.head().expand_or_pat().into_iter().map(move |pat| { + let mut new_patstack = PatStack::from_pattern(pat); + new_patstack.pats.extend_from_slice(&self.pats[1..]); + new_patstack + }) } /// This computes `S(self.head_ctor(), self)`. See top of the file for explanations. @@ -475,6 +494,17 @@ impl<'p, 'tcx> FromIterator<&'p Pat<'tcx>> for PatStack<'p, 'tcx> { } } +/// Pretty-printing for matrix row. +impl<'p, 'tcx> fmt::Debug for PatStack<'p, 'tcx> { + fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { + write!(f, "+")?; + for pat in self.iter() { + write!(f, " {} +", pat)?; + } + Ok(()) + } +} + /// A 2D matrix. #[derive(Clone, PartialEq)] pub(super) struct Matrix<'p, 'tcx> { @@ -491,13 +521,12 @@ impl<'p, 'tcx> Matrix<'p, 'tcx> { self.patterns.get(0).map(|r| r.len()) } - /// Pushes a new row to the matrix. If the row starts with an or-pattern, this expands it. + /// Pushes a new row to the matrix. If the row starts with an or-pattern, this recursively + /// expands it. fn push(&mut self, row: PatStack<'p, 'tcx>) { - if let Some(rows) = row.expand_or_pat() { - for row in rows { - // We recursively expand the or-patterns of the new rows. - // This is necessary as we might have `0 | (1 | 2)` or e.g., `x @ 0 | x @ (1 | 2)`. - self.push(row) + if !row.is_empty() && row.head().is_or_pat() { + for row in row.expand_or_pat() { + self.patterns.push(row); } } else { self.patterns.push(row); @@ -543,17 +572,11 @@ impl<'p, 'tcx> Matrix<'p, 'tcx> { /// Pretty-printer for matrices of patterns, example: /// /// ```text -/// +++++++++++++++++++++++++++++ /// + _ + [] + -/// +++++++++++++++++++++++++++++ /// + true + [First] + -/// +++++++++++++++++++++++++++++ /// + true + [Second(true)] + -/// +++++++++++++++++++++++++++++ /// + false + [_] + -/// +++++++++++++++++++++++++++++ /// + _ + [_, _, tail @ ..] + -/// +++++++++++++++++++++++++++++ /// ``` impl<'p, 'tcx> fmt::Debug for Matrix<'p, 'tcx> { fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { @@ -561,17 +584,14 @@ impl<'p, 'tcx> fmt::Debug for Matrix<'p, 'tcx> { let Matrix { patterns: m, .. } = self; let pretty_printed_matrix: Vec> = - m.iter().map(|row| row.iter().map(|pat| format!("{:?}", pat)).collect()).collect(); + m.iter().map(|row| row.iter().map(|pat| format!("{}", pat)).collect()).collect(); - let column_count = m.iter().map(|row| row.len()).max().unwrap_or(0); + let column_count = m.iter().map(|row| row.len()).next().unwrap_or(0); assert!(m.iter().all(|row| row.len() == column_count)); let column_widths: Vec = (0..column_count) .map(|col| pretty_printed_matrix.iter().map(|row| row[col].len()).max().unwrap_or(0)) .collect(); - let total_width = column_widths.iter().cloned().sum::() + column_count * 3 + 1; - let br = "+".repeat(total_width); - write!(f, "{}\n", br)?; for row in pretty_printed_matrix { write!(f, "+")?; for (column, pat_str) in row.into_iter().enumerate() { @@ -580,7 +600,6 @@ impl<'p, 'tcx> fmt::Debug for Matrix<'p, 'tcx> { write!(f, " +")?; } write!(f, "\n")?; - write!(f, "{}\n", br)?; } Ok(()) } @@ -600,183 +619,318 @@ impl<'p, 'tcx> FromIterator> for Matrix<'p, 'tcx> { } } -/// Represents a set of `Span`s closed under the containment relation. That is, if a `Span` is -/// contained in the set then all `Span`s contained in it are also implicitly contained in the set. -/// In particular this means that when intersecting two sets, taking the intersection of some span -/// and one of its subspans returns the subspan, whereas a simple `HashSet` would have returned an -/// empty intersection. -/// It is assumed that two spans don't overlap without one being contained in the other; in other -/// words, that the inclusion structure forms a tree and not a DAG. -/// Intersection is not very efficient. It compares everything pairwise. If needed it could be made -/// faster by sorting the `Span`s and merging cleverly. -#[derive(Debug, Clone, Default)] -pub(crate) struct SpanSet { - /// The minimal set of `Span`s required to represent the whole set. If A and B are `Span`s in - /// the `SpanSet`, and A is a descendant of B, then only B will be in `root_spans`. - /// Invariant: the spans are disjoint. - root_spans: Vec, +/// Given a pattern or a pattern-stack, this struct captures a set of its subpatterns. We use that +/// to track reachable sub-patterns arising from or-patterns. In the absence of or-patterns this +/// will always be either `Empty` (the whole pattern is unreachable) or `Full` (the whole pattern +/// is reachable). When there are or-patterns, some subpatterns may be reachable while others +/// aren't. In this case the whole pattern still counts as reachable, but we will lint the +/// unreachable subpatterns. +/// +/// This supports a limited set of operations, so not all possible sets of subpatterns can be +/// represented. That's ok, we only want the ones that make sense for our usage. +/// +/// What we're doing is illustrated by this: +/// ``` +/// match (true, 0) { +/// (true, 0) => {} +/// (_, 1) => {} +/// (true | false, 0 | 1) => {} +/// } +/// ``` +/// When we try the alternatives of the `true | false` or-pattern, the last `0` is reachable in the +/// `false` alternative but not the `true`. So overall it is reachable. By contrast, the last `1` +/// is not reachable in either alternative, so we want to signal this to the user. +/// Therefore we take the union of sets of reachable patterns coming from different alternatives in +/// order to figure out which subpatterns are overall reachable. +/// +/// Invariant: we try to construct the smallest representation we can. In particular if +/// `self.is_empty()` we ensure that `self` is `Empty`, and same with `Full`. This is not important +/// for correctness currently. +#[derive(Debug, Clone)] +enum SubPatSet<'p, 'tcx> { + /// The empty set. This means the pattern is unreachable. + Empty, + /// The set containing the full pattern. + Full, + /// If the pattern is a pattern with a constructor or a pattern-stack, we store a set for each + /// of its subpatterns. Missing entries in the map are implicitly full, because that's the + /// common case. + Seq { subpats: FxHashMap> }, + /// If the pattern is an or-pattern, we store a set for each of its alternatives. Missing + /// entries in the map are implicitly empty. Note: we always flatten nested or-patterns. + Alt { + subpats: FxHashMap>, + /// Counts the total number of alternatives in the pattern + alt_count: usize, + /// We keep the pattern around to retrieve spans. + pat: &'p Pat<'tcx>, + }, } -impl SpanSet { - /// Creates an empty set. - fn new() -> Self { - Self::default() - } - - /// Tests whether the set is empty. - pub(crate) fn is_empty(&self) -> bool { - self.root_spans.is_empty() +impl<'p, 'tcx> SubPatSet<'p, 'tcx> { + fn full() -> Self { + SubPatSet::Full } - - /// Iterate over the disjoint list of spans at the roots of this set. - pub(crate) fn iter<'a>(&'a self) -> impl Iterator + Captures<'a> { - self.root_spans.iter().copied() + fn empty() -> Self { + SubPatSet::Empty } - /// Tests whether the set contains a given Span. - fn contains(&self, span: Span) -> bool { - self.iter().any(|root_span| root_span.contains(span)) + fn is_empty(&self) -> bool { + match self { + SubPatSet::Empty => true, + SubPatSet::Full => false, + // If any subpattern in a sequence is unreachable, the whole pattern is unreachable. + SubPatSet::Seq { subpats } => subpats.values().any(|set| set.is_empty()), + // An or-pattern is reachable if any of its alternatives is. + SubPatSet::Alt { subpats, .. } => subpats.values().all(|set| set.is_empty()), + } } - /// Add a span to the set if we know the span has no intersection in this set. - fn push_nonintersecting(&mut self, new_span: Span) { - self.root_spans.push(new_span); + fn is_full(&self) -> bool { + match self { + SubPatSet::Empty => false, + SubPatSet::Full => true, + // The whole pattern is reachable only when all its alternatives are. + SubPatSet::Seq { subpats } => subpats.values().all(|sub_set| sub_set.is_full()), + // The whole or-pattern is reachable only when all its alternatives are. + SubPatSet::Alt { subpats, alt_count, .. } => { + subpats.len() == *alt_count && subpats.values().all(|set| set.is_full()) + } + } } - fn intersection_mut(&mut self, other: &Self) { - if self.is_empty() || other.is_empty() { - *self = Self::new(); + /// Union `self` with `other`, mutating `self`. + fn union(&mut self, other: Self) { + use SubPatSet::*; + // Union with full stays full; union with empty changes nothing. + if self.is_full() || other.is_empty() { + return; + } else if self.is_empty() { + *self = other; + return; + } else if other.is_full() { + *self = Full; return; } - // Those that were in `self` but not contained in `other` - let mut leftover = SpanSet::new(); - // We keep the elements in `self` that are also in `other`. - self.root_spans.retain(|span| { - let retain = other.contains(*span); - if !retain { - leftover.root_spans.push(*span); + + match (&mut *self, other) { + (Seq { subpats: s_set }, Seq { subpats: mut o_set }) => { + s_set.retain(|i, s_sub_set| { + // Missing entries count as full. + let o_sub_set = o_set.remove(&i).unwrap_or(Full); + s_sub_set.union(o_sub_set); + // We drop full entries. + !s_sub_set.is_full() + }); + // Everything left in `o_set` is missing from `s_set`, i.e. counts as full. Since + // unioning with full returns full, we can drop those entries. } - retain - }); - // We keep the elements in `other` that are also in the original `self`. You might think - // this is not needed because `self` already contains the intersection. But those aren't - // just sets of things. If `self = [a]`, `other = [b]` and `a` contains `b`, then `b` - // belongs in the intersection but we didn't catch it in the filtering above. We look at - // `leftover` instead of the full original `self` to avoid duplicates. - for span in other.iter() { - if leftover.contains(span) { - self.root_spans.push(span); + (Alt { subpats: s_set, .. }, Alt { subpats: mut o_set, .. }) => { + s_set.retain(|i, s_sub_set| { + // Missing entries count as empty. + let o_sub_set = o_set.remove(&i).unwrap_or(Empty); + s_sub_set.union(o_sub_set); + // We drop empty entries. + !s_sub_set.is_empty() + }); + // Everything left in `o_set` is missing from `s_set`, i.e. counts as empty. Since + // unioning with empty changes nothing, we can take those entries as is. + s_set.extend(o_set); + } + _ => bug!(), + } + + if self.is_full() { + *self = Full; + } + } + + /// Returns a list of the spans of the unreachable subpatterns. If `self` is empty (i.e. the + /// whole pattern is unreachable) we return `None`. + fn list_unreachable_spans(&self) -> Option> { + /// Panics if `set.is_empty()`. + fn fill_spans(set: &SubPatSet<'_, '_>, spans: &mut Vec) { + match set { + SubPatSet::Empty => bug!(), + SubPatSet::Full => {} + SubPatSet::Seq { subpats } => { + for (_, sub_set) in subpats { + fill_spans(sub_set, spans); + } + } + SubPatSet::Alt { subpats, pat, alt_count, .. } => { + let expanded = pat.expand_or_pat(); + for i in 0..*alt_count { + let sub_set = subpats.get(&i).unwrap_or(&SubPatSet::Empty); + if sub_set.is_empty() { + // Found a unreachable subpattern. + spans.push(expanded[i].span); + } else { + fill_spans(sub_set, spans); + } + } + } } } + + if self.is_empty() { + return None; + } + if self.is_full() { + // No subpatterns are unreachable. + return Some(Vec::new()); + } + let mut spans = Vec::new(); + fill_spans(self, &mut spans); + Some(spans) + } + + /// When `self` refers to a patstack that was obtained from specialization, after running + /// `unspecialize` it will refer to the original patstack before specialization. + fn unspecialize(self, arity: usize) -> Self { + use SubPatSet::*; + match self { + Full => Full, + Empty => Empty, + Seq { subpats } => { + // We gather the first `arity` subpatterns together and shift the remaining ones. + let mut new_subpats = FxHashMap::default(); + let mut new_subpats_first_col = FxHashMap::default(); + for (i, sub_set) in subpats { + if i < arity { + // The first `arity` indices are now part of the pattern in the first + // column. + new_subpats_first_col.insert(i, sub_set); + } else { + // Indices after `arity` are simply shifted + new_subpats.insert(i - arity + 1, sub_set); + } + } + // If `new_subpats_first_col` has no entries it counts as full, so we can omit it. + if !new_subpats_first_col.is_empty() { + new_subpats.insert(0, Seq { subpats: new_subpats_first_col }); + } + Seq { subpats: new_subpats } + } + Alt { .. } => bug!(), // `self` is a patstack + } + } + + /// When `self` refers to a patstack that was obtained from splitting an or-pattern, after + /// running `unspecialize` it will refer to the original patstack before splitting. + /// + /// For example: + /// ``` + /// match Some(true) { + /// Some(true) => {} + /// None | Some(true | false) => {} + /// } + /// ``` + /// Here `None` would return the full set and `Some(true | false)` would return the set + /// containing `false`. After `unsplit_or_pat`, we want the set to contain `None` and `false`. + /// This is what this function does. + fn unsplit_or_pat(mut self, alt_id: usize, alt_count: usize, pat: &'p Pat<'tcx>) -> Self { + use SubPatSet::*; + if self.is_empty() { + return Empty; + } + + // Subpatterns coming from inside the or-pattern alternative itself, e.g. in `None | Some(0 + // | 1)`. + let set_first_col = match &mut self { + Full => Full, + Seq { subpats } => subpats.remove(&0).unwrap_or(Full), + Empty => unreachable!(), + Alt { .. } => bug!(), // `self` is a patstack + }; + let mut subpats_first_col = FxHashMap::default(); + subpats_first_col.insert(alt_id, set_first_col); + let set_first_col = Alt { subpats: subpats_first_col, pat, alt_count }; + + let mut subpats = match self { + Full => FxHashMap::default(), + Seq { subpats } => subpats, + Empty => unreachable!(), + Alt { .. } => bug!(), // `self` is a patstack + }; + subpats.insert(0, set_first_col); + Seq { subpats } } } +/// This carries the results of computing usefulness, as described at the top of the file. When +/// checking usefulness of a match branch, we use the `NoWitnesses` variant, which also keeps track +/// of potential unreachable sub-patterns (in the presence of or-patterns). When checking +/// exhaustiveness of a whole match, we use the `WithWitnesses` variant, which carries a list of +/// witnesses of non-exhaustiveness when there are any. +/// Which variant to use is dictated by `WitnessPreference`. #[derive(Clone, Debug)] -crate enum Usefulness<'tcx> { - /// Pontentially carries a set of sub-branches that have been found to be unreachable. Used - /// only in the presence of or-patterns, otherwise it stays empty. - Useful(SpanSet), - /// Carries a list of witnesses of non-exhaustiveness. - UsefulWithWitness(Vec>), - NotUseful, +enum Usefulness<'p, 'tcx> { + /// Carries a set of subpatterns that have been found to be reachable. If empty, this indicates + /// the whole pattern is unreachable. If not, this indicates that the pattern is reachable but + /// that some sub-patterns may be unreachable (due to or-patterns). In the absence of + /// or-patterns this will always be either `Empty` (the whole pattern is unreachable) or `Full` + /// (the whole pattern is reachable). + NoWitnesses(SubPatSet<'p, 'tcx>), + /// Carries a list of witnesses of non-exhaustiveness. If empty, indicates that the whole + /// pattern is unreachable. + WithWitnesses(Vec>), } -impl<'tcx> Usefulness<'tcx> { +impl<'p, 'tcx> Usefulness<'p, 'tcx> { fn new_useful(preference: WitnessPreference) -> Self { match preference { - ConstructWitness => UsefulWithWitness(vec![Witness(vec![])]), - LeaveOutWitness => Useful(Default::default()), + ConstructWitness => WithWitnesses(vec![Witness(vec![])]), + LeaveOutWitness => NoWitnesses(SubPatSet::full()), + } + } + fn new_not_useful(preference: WitnessPreference) -> Self { + match preference { + ConstructWitness => WithWitnesses(vec![]), + LeaveOutWitness => NoWitnesses(SubPatSet::empty()), + } + } + + /// Combine usefulnesses from two branches. This is an associative operation. + fn extend(&mut self, other: Self) { + match (&mut *self, other) { + (WithWitnesses(_), WithWitnesses(o)) if o.is_empty() => {} + (WithWitnesses(s), WithWitnesses(o)) if s.is_empty() => *self = WithWitnesses(o), + (WithWitnesses(s), WithWitnesses(o)) => s.extend(o), + (NoWitnesses(s), NoWitnesses(o)) => s.union(o), + _ => unreachable!(), } } /// When trying several branches and each returns a `Usefulness`, we need to combine the /// results together. - fn merge(usefulnesses: impl Iterator) -> Self { - // If we have detected some unreachable sub-branches, we only want to keep them when they - // were unreachable in _all_ branches. Eg. in the following, the last `true` is unreachable - // in the second branch of the first or-pattern, but not otherwise. Therefore we don't want - // to lint that it is unreachable. - // ``` - // match (true, true) { - // (true, true) => {} - // (false | true, false | true) => {} - // } - // ``` - // Here however we _do_ want to lint that the last `false` is unreachable. So we don't want - // to intersect the spans that come directly from the or-pattern, since each branch of the - // or-pattern brings a new disjoint pattern. - // ``` - // match None { - // Some(false) => {} - // None | Some(true | false) => {} - // } - // ``` - - // Is `None` when no branch was useful. Will often be `Some(Spanset::new())` because the - // sets are only non-empty in the presence of or-patterns. - let mut unreachables: Option = None; - // Witnesses of usefulness, if any. - let mut witnesses = Vec::new(); - + fn merge(pref: WitnessPreference, usefulnesses: impl Iterator) -> Self { + let mut ret = Self::new_not_useful(pref); for u in usefulnesses { - match u { - Useful(spans) if spans.is_empty() => { - // Once we reach the empty set, more intersections won't change the result. - return Useful(SpanSet::new()); - } - Useful(spans) => { - if let Some(unreachables) = &mut unreachables { - if !unreachables.is_empty() { - unreachables.intersection_mut(&spans); - } - if unreachables.is_empty() { - return Useful(SpanSet::new()); - } - } else { - unreachables = Some(spans); - } - } - NotUseful => {} - UsefulWithWitness(wits) => { - witnesses.extend(wits); + ret.extend(u); + if let NoWitnesses(subpats) = &ret { + if subpats.is_full() { + // Once we reach the full set, more unions won't change the result. + return ret; } } } - - if !witnesses.is_empty() { - UsefulWithWitness(witnesses) - } else if let Some(unreachables) = unreachables { - Useful(unreachables) - } else { - NotUseful - } + ret } /// After calculating the usefulness for a branch of an or-pattern, call this to make this /// usefulness mergeable with those from the other branches. - fn unsplit_or_pat(self, this_span: Span, or_pat_spans: &[Span]) -> Self { + fn unsplit_or_pat(self, alt_id: usize, alt_count: usize, pat: &'p Pat<'tcx>) -> Self { match self { - Useful(mut spans) => { - // We register the spans of the other branches of this or-pattern as being - // unreachable from this one. This ensures that intersecting together the sets of - // spans returns what we want. - // Until we optimize `SpanSet` however, intersecting this entails a number of - // comparisons quadratic in the number of branches. - for &span in or_pat_spans { - if span != this_span { - spans.push_nonintersecting(span); - } - } - Useful(spans) - } - x => x, + NoWitnesses(subpats) => NoWitnesses(subpats.unsplit_or_pat(alt_id, alt_count, pat)), + WithWitnesses(_) => bug!(), } } /// After calculating usefulness after a specialization, call this to recontruct a usefulness /// that makes sense for the matrix pre-specialization. This new usefulness can then be merged /// with the results of specializing with the other constructors. - fn apply_constructor<'p>( + fn apply_constructor( self, pcx: PatCtxt<'_, 'p, 'tcx>, matrix: &Matrix<'p, 'tcx>, // used to compute missing ctors @@ -784,7 +938,8 @@ impl<'tcx> Usefulness<'tcx> { ctor_wild_subpatterns: &Fields<'p, 'tcx>, ) -> Self { match self { - UsefulWithWitness(witnesses) => { + WithWitnesses(witnesses) if witnesses.is_empty() => WithWitnesses(witnesses), + WithWitnesses(witnesses) => { let new_witnesses = if matches!(ctor, Constructor::Missing) { let mut split_wildcard = SplitWildcard::new(pcx); split_wildcard.split(pcx, matrix.head_ctors(pcx.cx)); @@ -814,9 +969,9 @@ impl<'tcx> Usefulness<'tcx> { .map(|witness| witness.apply_constructor(pcx, &ctor, ctor_wild_subpatterns)) .collect() }; - UsefulWithWitness(new_witnesses) + WithWitnesses(new_witnesses) } - x => x, + NoWitnesses(subpats) => NoWitnesses(subpats.unspecialize(ctor_wild_subpatterns.len())), } } } @@ -924,6 +1079,7 @@ impl<'tcx> Witness<'tcx> { /// `is_under_guard` is used to inform if the pattern has a guard. If it /// has one it must not be inserted into the matrix. This shouldn't be /// relied on for soundness. +#[instrument(skip(cx, matrix, witness_preference, hir_id, is_under_guard, is_top_level))] fn is_useful<'p, 'tcx>( cx: &MatchCheckCtxt<'p, 'tcx>, matrix: &Matrix<'p, 'tcx>, @@ -932,9 +1088,9 @@ fn is_useful<'p, 'tcx>( hir_id: HirId, is_under_guard: bool, is_top_level: bool, -) -> Usefulness<'tcx> { +) -> Usefulness<'p, 'tcx> { + debug!("matrix,v={:?}{:?}", matrix, v); let Matrix { patterns: rows, .. } = matrix; - debug!("is_useful({:#?}, {:#?})", matrix, v); // The base case. We are pattern-matching on () and the return value is // based on whether our matrix has a row or not. @@ -942,12 +1098,14 @@ fn is_useful<'p, 'tcx>( // first and then, if v is non-empty, the return value is based on whether // the type of the tuple we're checking is inhabited or not. if v.is_empty() { - return if rows.is_empty() { + let ret = if rows.is_empty() { Usefulness::new_useful(witness_preference) } else { - NotUseful + Usefulness::new_not_useful(witness_preference) }; - }; + debug!(?ret); + return ret; + } assert!(rows.iter().all(|r| r.len() == v.len())); @@ -955,16 +1113,15 @@ fn is_useful<'p, 'tcx>( let ty = matrix.heads().next().map_or(v.head().ty, |r| r.ty); let pcx = PatCtxt { cx, ty, span: v.head().span, is_top_level }; - debug!("is_useful_expand_first_col: ty={:#?}, expanding {:#?}", pcx.ty, v.head()); - // If the first pattern is an or-pattern, expand it. - let ret = if let Some(vs) = v.expand_or_pat() { - let subspans: Vec<_> = vs.iter().map(|v| v.head().span).collect(); - // We expand the or pattern, trying each of its branches in turn and keeping careful track - // of possible unreachable sub-branches. + let ret = if v.head().is_or_pat() { + debug!("expanding or-pattern"); + let v_head = v.head(); + let vs: Vec<_> = v.expand_or_pat().collect(); + let alt_count = vs.len(); + // We try each or-pattern branch in turn. let mut matrix = matrix.clone(); - let usefulnesses = vs.into_iter().map(|v| { - let v_span = v.head().span; + let usefulnesses = vs.into_iter().enumerate().map(|(i, v)| { let usefulness = is_useful(cx, &matrix, &v, witness_preference, hir_id, is_under_guard, false); // If pattern has a guard don't add it to the matrix. @@ -973,9 +1130,9 @@ fn is_useful<'p, 'tcx>( // branches like `Some(_) | Some(0)`. matrix.push(v); } - usefulness.unsplit_or_pat(v_span, &subspans) + usefulness.unsplit_or_pat(i, alt_count, v_head) }); - Usefulness::merge(usefulnesses) + Usefulness::merge(witness_preference, usefulnesses) } else { let v_ctor = v.head_ctor(cx); if let Constructor::IntRange(ctor_range) = &v_ctor { @@ -993,6 +1150,7 @@ fn is_useful<'p, 'tcx>( // witness the usefulness of `v`. let start_matrix = &matrix; let usefulnesses = split_ctors.into_iter().map(|ctor| { + debug!("specialize({:?})", ctor); // We cache the result of `Fields::wildcards` because it is used a lot. let ctor_wild_subpatterns = Fields::wildcards(pcx, &ctor); let spec_matrix = @@ -1002,9 +1160,9 @@ fn is_useful<'p, 'tcx>( is_useful(cx, &spec_matrix, &v, witness_preference, hir_id, is_under_guard, false); usefulness.apply_constructor(pcx, start_matrix, &ctor, &ctor_wild_subpatterns) }); - Usefulness::merge(usefulnesses) + Usefulness::merge(witness_preference, usefulnesses) }; - debug!("is_useful::returns({:#?}, {:#?}) = {:?}", matrix, v, ret); + debug!(?ret); ret } @@ -1017,10 +1175,21 @@ crate struct MatchArm<'p, 'tcx> { crate has_guard: bool, } +/// Indicates whether or not a given arm is reachable. +#[derive(Clone, Debug)] +crate enum Reachability { + /// The arm is reachable. This additionally carries a set of or-pattern branches that have been + /// found to be unreachable despite the overall arm being reachable. Used only in the presence + /// of or-patterns, otherwise it stays empty. + Reachable(Vec), + /// The arm is unreachable. + Unreachable, +} + /// The output of checking a match for exhaustiveness and arm reachability. crate struct UsefulnessReport<'p, 'tcx> { /// For each arm of the input, whether that arm is reachable after the arms above it. - crate arm_usefulness: Vec<(MatchArm<'p, 'tcx>, Usefulness<'tcx>)>, + crate arm_usefulness: Vec<(MatchArm<'p, 'tcx>, Reachability)>, /// If the match is exhaustive, this is empty. If not, this contains witnesses for the lack of /// exhaustiveness. crate non_exhaustiveness_witnesses: Vec>, @@ -1048,7 +1217,14 @@ crate fn compute_match_usefulness<'p, 'tcx>( if !arm.has_guard { matrix.push(v); } - (arm, usefulness) + let reachability = match usefulness { + NoWitnesses(subpats) if subpats.is_empty() => Reachability::Unreachable, + NoWitnesses(subpats) => { + Reachability::Reachable(subpats.list_unreachable_spans().unwrap()) + } + WithWitnesses(..) => bug!(), + }; + (arm, reachability) }) .collect(); @@ -1056,15 +1232,8 @@ crate fn compute_match_usefulness<'p, 'tcx>( let v = PatStack::from_pattern(wild_pattern); let usefulness = is_useful(cx, &matrix, &v, ConstructWitness, scrut_hir_id, false, true); let non_exhaustiveness_witnesses = match usefulness { - NotUseful => vec![], // Wildcard pattern isn't useful, so the match is exhaustive. - UsefulWithWitness(pats) => { - if pats.is_empty() { - bug!("Exhaustiveness check returned no witnesses") - } else { - pats.into_iter().map(|w| w.single_pattern()).collect() - } - } - Useful(_) => bug!(), + WithWitnesses(pats) => pats.into_iter().map(|w| w.single_pattern()).collect(), + NoWitnesses(_) => bug!(), }; UsefulnessReport { arm_usefulness, non_exhaustiveness_witnesses } } diff --git a/src/test/ui/or-patterns/exhaustiveness-unreachable-pattern.rs b/src/test/ui/or-patterns/exhaustiveness-unreachable-pattern.rs index 184ffa85c40e2..bdb7a1ec92b7f 100644 --- a/src/test/ui/or-patterns/exhaustiveness-unreachable-pattern.rs +++ b/src/test/ui/or-patterns/exhaustiveness-unreachable-pattern.rs @@ -48,6 +48,25 @@ fn main() { (1 | 1,) => {} //~ ERROR unreachable _ => {} } + match 0 { + (0 | 1) | 1 => {} //~ ERROR unreachable + _ => {} + } + match 0 { + // We get two errors because recursive or-pattern expansion means we don't notice the two + // errors span a whole pattern. This could be better but doesn't matter much + 0 | (0 | 0) => {} + //~^ ERROR unreachable + //~| ERROR unreachable + _ => {} + } + match None { + // There is only one error that correctly points to the whole subpattern + Some(0) | + Some( //~ ERROR unreachable + 0 | 0) => {} + _ => {} + } match [0; 2] { [0 | 0 //~ ERROR unreachable @@ -84,8 +103,8 @@ fn main() { } macro_rules! t_or_f { () => { - (true // FIXME: should be unreachable - | false) + (true //~ ERROR unreachable + | false) }; } match (true, None) { diff --git a/src/test/ui/or-patterns/exhaustiveness-unreachable-pattern.stderr b/src/test/ui/or-patterns/exhaustiveness-unreachable-pattern.stderr index 8b1003b5514a6..51991fc603967 100644 --- a/src/test/ui/or-patterns/exhaustiveness-unreachable-pattern.stderr +++ b/src/test/ui/or-patterns/exhaustiveness-unreachable-pattern.stderr @@ -77,58 +77,94 @@ LL | (1 | 1,) => {} | ^ error: unreachable pattern - --> $DIR/exhaustiveness-unreachable-pattern.rs:53:15 + --> $DIR/exhaustiveness-unreachable-pattern.rs:52:19 + | +LL | (0 | 1) | 1 => {} + | ^ + +error: unreachable pattern + --> $DIR/exhaustiveness-unreachable-pattern.rs:58:14 + | +LL | 0 | (0 | 0) => {} + | ^ + +error: unreachable pattern + --> $DIR/exhaustiveness-unreachable-pattern.rs:58:18 + | +LL | 0 | (0 | 0) => {} + | ^ + +error: unreachable pattern + --> $DIR/exhaustiveness-unreachable-pattern.rs:66:13 + | +LL | / Some( +LL | | 0 | 0) => {} + | |______________________^ + +error: unreachable pattern + --> $DIR/exhaustiveness-unreachable-pattern.rs:72:15 | LL | | 0 | ^ error: unreachable pattern - --> $DIR/exhaustiveness-unreachable-pattern.rs:55:15 + --> $DIR/exhaustiveness-unreachable-pattern.rs:74:15 | LL | | 0] => {} | ^ error: unreachable pattern - --> $DIR/exhaustiveness-unreachable-pattern.rs:63:10 + --> $DIR/exhaustiveness-unreachable-pattern.rs:82:10 | LL | [1 | ^ error: unreachable pattern - --> $DIR/exhaustiveness-unreachable-pattern.rs:75:10 + --> $DIR/exhaustiveness-unreachable-pattern.rs:94:10 | LL | [true | ^^^^ error: unreachable pattern - --> $DIR/exhaustiveness-unreachable-pattern.rs:82:36 + --> $DIR/exhaustiveness-unreachable-pattern.rs:101:36 | LL | (true | false, None | Some(true | ^^^^ error: unreachable pattern - --> $DIR/exhaustiveness-unreachable-pattern.rs:98:14 + --> $DIR/exhaustiveness-unreachable-pattern.rs:106:14 + | +LL | (true + | ^^^^ +... +LL | (true | false, None | Some(t_or_f!())) => {} + | --------- in this macro invocation + | + = note: this error originates in a macro (in Nightly builds, run with -Z macro-backtrace for more info) + +error: unreachable pattern + --> $DIR/exhaustiveness-unreachable-pattern.rs:117:14 | LL | Some(0 | ^ error: unreachable pattern - --> $DIR/exhaustiveness-unreachable-pattern.rs:117:19 + --> $DIR/exhaustiveness-unreachable-pattern.rs:136:19 | LL | | false) => {} | ^^^^^ error: unreachable pattern - --> $DIR/exhaustiveness-unreachable-pattern.rs:125:15 + --> $DIR/exhaustiveness-unreachable-pattern.rs:144:15 | LL | | true) => {} | ^^^^ error: unreachable pattern - --> $DIR/exhaustiveness-unreachable-pattern.rs:131:15 + --> $DIR/exhaustiveness-unreachable-pattern.rs:150:15 | LL | | true, | ^^^^ -error: aborting due to 21 previous errors +error: aborting due to 26 previous errors diff --git a/src/test/ui/pattern/usefulness/issue-80501-or-pat-and-macro.rs b/src/test/ui/pattern/usefulness/issue-80501-or-pat-and-macro.rs new file mode 100644 index 0000000000000..aac7d7d5385a4 --- /dev/null +++ b/src/test/ui/pattern/usefulness/issue-80501-or-pat-and-macro.rs @@ -0,0 +1,27 @@ +// check-pass +#![deny(unreachable_patterns)] +pub enum TypeCtor { + Slice, + Array, +} + +pub struct ApplicationTy(TypeCtor); + +macro_rules! ty_app { + ($ctor:pat) => { + ApplicationTy($ctor) + }; +} + +fn _foo(ty: ApplicationTy) { + match ty { + ty_app!(TypeCtor::Array) | ty_app!(TypeCtor::Slice) => {} + } + + // same as above, with the macro expanded + match ty { + ApplicationTy(TypeCtor::Array) | ApplicationTy(TypeCtor::Slice) => {} + } +} + +fn main() {}