-
Notifications
You must be signed in to change notification settings - Fork 432
/
lib.rs
1242 lines (1137 loc) · 38 KB
/
lib.rs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
// Copyright 2013-2014 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
//! Utilities for random number generation
//!
//! The key functions are `random()` and `Rng::gen()`. These are polymorphic and
//! so can be used to generate any type that implements `Rand`. Type inference
//! means that often a simple call to `rand::random()` or `rng.gen()` will
//! suffice, but sometimes an annotation is required, e.g.
//! `rand::random::<f64>()`.
//!
//! See the `distributions` submodule for sampling random numbers from
//! distributions like normal and exponential.
//!
//! # Usage
//!
//! This crate is [on crates.io](https://crates.io/crates/rand) and can be
//! used by adding `rand` to the dependencies in your project's `Cargo.toml`.
//!
//! ```toml
//! [dependencies]
//! rand = "0.3"
//! ```
//!
//! and this to your crate root:
//!
//! ```rust
//! extern crate rand;
//! ```
//!
//! # Thread-local RNG
//!
//! There is built-in support for a RNG associated with each thread stored
//! in thread-local storage. This RNG can be accessed via `thread_rng`, or
//! used implicitly via `random`. This RNG is normally randomly seeded
//! from an operating-system source of randomness, e.g. `/dev/urandom` on
//! Unix systems, and will automatically reseed itself from this source
//! after generating 32 KiB of random data.
//!
//! # Cryptographic security
//!
//! An application that requires an entropy source for cryptographic purposes
//! must use `OsRng`, which reads randomness from the source that the operating
//! system provides (e.g. `/dev/urandom` on Unixes or `CryptGenRandom()` on
//! Windows).
//! The other random number generators provided by this module are not suitable
//! for such purposes.
//!
//! *Note*: many Unix systems provide `/dev/random` as well as `/dev/urandom`.
//! This module uses `/dev/urandom` for the following reasons:
//!
//! - On Linux, `/dev/random` may block if entropy pool is empty;
//! `/dev/urandom` will not block. This does not mean that `/dev/random`
//! provides better output than `/dev/urandom`; the kernel internally runs a
//! cryptographically secure pseudorandom number generator (CSPRNG) based on
//! entropy pool for random number generation, so the "quality" of
//! `/dev/random` is not better than `/dev/urandom` in most cases. However,
//! this means that `/dev/urandom` can yield somewhat predictable randomness
//! if the entropy pool is very small, such as immediately after first
//! booting. Linux 3.17 added the `getrandom(2)` system call which solves
//! the issue: it blocks if entropy pool is not initialized yet, but it does
//! not block once initialized. `OsRng` tries to use `getrandom(2)` if
//! available, and use `/dev/urandom` fallback if not. If an application
//! does not have `getrandom` and likely to be run soon after first booting,
//! or on a system with very few entropy sources, one should consider using
//! `/dev/random` via `ReadRng`.
//! - On some systems (e.g. FreeBSD, OpenBSD and Mac OS X) there is no
//! difference between the two sources. (Also note that, on some systems
//! e.g. FreeBSD, both `/dev/random` and `/dev/urandom` may block once if
//! the CSPRNG has not seeded yet.)
//!
//! # Examples
//!
//! ```rust
//! use rand::Rng;
//!
//! let mut rng = rand::thread_rng();
//! if rng.gen() { // random bool
//! println!("i32: {}, u32: {}", rng.gen::<i32>(), rng.gen::<u32>())
//! }
//! ```
//!
//! ```rust
//! let tuple = rand::random::<(f64, char)>();
//! println!("{:?}", tuple)
//! ```
//!
//! ## Monte Carlo estimation of π
//!
//! For this example, imagine we have a square with sides of length 2 and a unit
//! circle, both centered at the origin. Since the area of a unit circle is π,
//! we have:
//!
//! ```text
//! (area of unit circle) / (area of square) = π / 4
//! ```
//!
//! So if we sample many points randomly from the square, roughly π / 4 of them
//! should be inside the circle.
//!
//! We can use the above fact to estimate the value of π: pick many points in
//! the square at random, calculate the fraction that fall within the circle,
//! and multiply this fraction by 4.
//!
//! ```
//! use rand::distributions::{IndependentSample, Range};
//!
//! fn main() {
//! let between = Range::new(-1f64, 1.);
//! let mut rng = rand::thread_rng();
//!
//! let total = 1_000_000;
//! let mut in_circle = 0;
//!
//! for _ in 0..total {
//! let a = between.ind_sample(&mut rng);
//! let b = between.ind_sample(&mut rng);
//! if a*a + b*b <= 1. {
//! in_circle += 1;
//! }
//! }
//!
//! // prints something close to 3.14159...
//! println!("{}", 4. * (in_circle as f64) / (total as f64));
//! }
//! ```
//!
//! ## Monty Hall Problem
//!
//! This is a simulation of the [Monty Hall Problem][]:
//!
//! > Suppose you're on a game show, and you're given the choice of three doors:
//! > Behind one door is a car; behind the others, goats. You pick a door, say
//! > No. 1, and the host, who knows what's behind the doors, opens another
//! > door, say No. 3, which has a goat. He then says to you, "Do you want to
//! > pick door No. 2?" Is it to your advantage to switch your choice?
//!
//! The rather unintuitive answer is that you will have a 2/3 chance of winning
//! if you switch and a 1/3 chance of winning if you don't, so it's better to
//! switch.
//!
//! This program will simulate the game show and with large enough simulation
//! steps it will indeed confirm that it is better to switch.
//!
//! [Monty Hall Problem]: http://en.wikipedia.org/wiki/Monty_Hall_problem
//!
//! ```
//! use rand::Rng;
//! use rand::distributions::{IndependentSample, Range};
//!
//! struct SimulationResult {
//! win: bool,
//! switch: bool,
//! }
//!
//! // Run a single simulation of the Monty Hall problem.
//! fn simulate<R: Rng>(random_door: &Range<u32>, rng: &mut R)
//! -> SimulationResult {
//! let car = random_door.ind_sample(rng);
//!
//! // This is our initial choice
//! let mut choice = random_door.ind_sample(rng);
//!
//! // The game host opens a door
//! let open = game_host_open(car, choice, rng);
//!
//! // Shall we switch?
//! let switch = rng.gen();
//! if switch {
//! choice = switch_door(choice, open);
//! }
//!
//! SimulationResult { win: choice == car, switch: switch }
//! }
//!
//! // Returns the door the game host opens given our choice and knowledge of
//! // where the car is. The game host will never open the door with the car.
//! fn game_host_open<R: Rng>(car: u32, choice: u32, rng: &mut R) -> u32 {
//! let choices = free_doors(&[car, choice]);
//! rand::sample(rng, choices.into_iter(), 1)[0]
//! }
//!
//! // Returns the door we switch to, given our current choice and
//! // the open door. There will only be one valid door.
//! fn switch_door(choice: u32, open: u32) -> u32 {
//! free_doors(&[choice, open])[0]
//! }
//!
//! fn free_doors(blocked: &[u32]) -> Vec<u32> {
//! (0..3).filter(|x| !blocked.contains(x)).collect()
//! }
//!
//! fn main() {
//! // The estimation will be more accurate with more simulations
//! let num_simulations = 10000;
//!
//! let mut rng = rand::thread_rng();
//! let random_door = Range::new(0, 3);
//!
//! let (mut switch_wins, mut switch_losses) = (0, 0);
//! let (mut keep_wins, mut keep_losses) = (0, 0);
//!
//! println!("Running {} simulations...", num_simulations);
//! for _ in 0..num_simulations {
//! let result = simulate(&random_door, &mut rng);
//!
//! match (result.win, result.switch) {
//! (true, true) => switch_wins += 1,
//! (true, false) => keep_wins += 1,
//! (false, true) => switch_losses += 1,
//! (false, false) => keep_losses += 1,
//! }
//! }
//!
//! let total_switches = switch_wins + switch_losses;
//! let total_keeps = keep_wins + keep_losses;
//!
//! println!("Switched door {} times with {} wins and {} losses",
//! total_switches, switch_wins, switch_losses);
//!
//! println!("Kept our choice {} times with {} wins and {} losses",
//! total_keeps, keep_wins, keep_losses);
//!
//! // With a large number of simulations, the values should converge to
//! // 0.667 and 0.333 respectively.
//! println!("Estimated chance to win if we switch: {}",
//! switch_wins as f32 / total_switches as f32);
//! println!("Estimated chance to win if we don't: {}",
//! keep_wins as f32 / total_keeps as f32);
//! }
//! ```
#![doc(html_logo_url = "https://www.rust-lang.org/logos/rust-logo-128x128-blk.png",
html_favicon_url = "https://www.rust-lang.org/favicon.ico",
html_root_url = "https://doc.rust-lang.org/rand/")]
#[cfg(test)] #[macro_use] extern crate log;
use std::cell::RefCell;
use std::marker;
use std::mem;
use std::io;
use std::rc::Rc;
use std::num::Wrapping as w;
pub use os::OsRng;
pub use isaac::{IsaacRng, Isaac64Rng};
pub use chacha::ChaChaRng;
#[cfg(target_pointer_width = "32")]
use IsaacRng as IsaacWordRng;
#[cfg(target_pointer_width = "64")]
use Isaac64Rng as IsaacWordRng;
use distributions::{Range, IndependentSample};
use distributions::range::SampleRange;
pub mod distributions;
pub mod isaac;
pub mod chacha;
pub mod reseeding;
mod rand_impls;
pub mod os;
pub mod read;
#[allow(bad_style)]
type w64 = w<u64>;
#[allow(bad_style)]
type w32 = w<u32>;
/// A type that can be randomly generated using an `Rng`.
pub trait Rand : Sized {
/// Generates a random instance of this type using the specified source of
/// randomness.
fn rand<R: Rng>(rng: &mut R) -> Self;
}
/// A random number generator.
pub trait Rng {
/// Return the next random u32.
///
/// This rarely needs to be called directly, prefer `r.gen()` to
/// `r.next_u32()`.
// FIXME #7771: Should be implemented in terms of next_u64
fn next_u32(&mut self) -> u32;
/// Return the next random u64.
///
/// By default this is implemented in terms of `next_u32`. An
/// implementation of this trait must provide at least one of
/// these two methods. Similarly to `next_u32`, this rarely needs
/// to be called directly, prefer `r.gen()` to `r.next_u64()`.
fn next_u64(&mut self) -> u64 {
((self.next_u32() as u64) << 32) | (self.next_u32() as u64)
}
/// Return the next random f32 selected from the half-open
/// interval `[0, 1)`.
///
/// This uses a technique described by Saito and Matsumoto at
/// MCQMC'08. Given that the IEEE floating point numbers are
/// uniformly distributed over [1,2), we generate a number in
/// this range and then offset it onto the range [0,1). Our
/// choice of bits (masking v. shifting) is arbitrary and
/// should be immaterial for high quality generators. For low
/// quality generators (ex. LCG), prefer bitshifting due to
/// correlation between sequential low order bits.
///
/// See:
/// A PRNG specialized in double precision floating point numbers using
/// an affine transition
/// http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/ARTICLES/dSFMT.pdf
/// http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/SFMT/dSFMT-slide-e.pdf
///
/// By default this is implemented in terms of `next_u32`, but a
/// random number generator which can generate numbers satisfying
/// the requirements directly can overload this for performance.
/// It is required that the return value lies in `[0, 1)`.
///
/// See `Closed01` for the closed interval `[0,1]`, and
/// `Open01` for the open interval `(0,1)`.
fn next_f32(&mut self) -> f32 {
const UPPER_MASK: u32 = 0x3F800000;
const LOWER_MASK: u32 = 0x7FFFFF;
let tmp = UPPER_MASK | (self.next_u32() & LOWER_MASK);
let result: f32 = unsafe { mem::transmute(tmp) };
result - 1.0
}
/// Return the next random f64 selected from the half-open
/// interval `[0, 1)`.
///
/// By default this is implemented in terms of `next_u64`, but a
/// random number generator which can generate numbers satisfying
/// the requirements directly can overload this for performance.
/// It is required that the return value lies in `[0, 1)`.
///
/// See `Closed01` for the closed interval `[0,1]`, and
/// `Open01` for the open interval `(0,1)`.
fn next_f64(&mut self) -> f64 {
const UPPER_MASK: u64 = 0x3FF0000000000000;
const LOWER_MASK: u64 = 0xFFFFFFFFFFFFF;
let tmp = UPPER_MASK | (self.next_u64() & LOWER_MASK);
let result: f64 = unsafe { mem::transmute(tmp) };
result - 1.0
}
/// Fill `dest` with random data.
///
/// This has a default implementation in terms of `next_u64` and
/// `next_u32`, but should be overridden by implementations that
/// offer a more efficient solution than just calling those
/// methods repeatedly.
///
/// This method does *not* have a requirement to bear any fixed
/// relationship to the other methods, for example, it does *not*
/// have to result in the same output as progressively filling
/// `dest` with `self.gen::<u8>()`, and any such behaviour should
/// not be relied upon.
///
/// This method should guarantee that `dest` is entirely filled
/// with new data, and may panic if this is impossible
/// (e.g. reading past the end of a file that is being used as the
/// source of randomness).
///
/// # Example
///
/// ```rust
/// use rand::{thread_rng, Rng};
///
/// let mut v = [0u8; 13579];
/// thread_rng().fill_bytes(&mut v);
/// println!("{:?}", &v[..]);
/// ```
fn fill_bytes(&mut self, dest: &mut [u8]) {
// this could, in theory, be done by transmuting dest to a
// [u64], but this is (1) likely to be undefined behaviour for
// LLVM, (2) has to be very careful about alignment concerns,
// (3) adds more `unsafe` that needs to be checked, (4)
// probably doesn't give much performance gain if
// optimisations are on.
let mut count = 0;
let mut num = 0;
for byte in dest.iter_mut() {
if count == 0 {
// we could micro-optimise here by generating a u32 if
// we only need a few more bytes to fill the vector
// (i.e. at most 4).
num = self.next_u64();
count = 8;
}
*byte = (num & 0xff) as u8;
num >>= 8;
count -= 1;
}
}
/// Return a random value of a `Rand` type.
///
/// # Example
///
/// ```rust
/// use rand::{thread_rng, Rng};
///
/// let mut rng = thread_rng();
/// let x: u32 = rng.gen();
/// println!("{}", x);
/// println!("{:?}", rng.gen::<(f64, bool)>());
/// ```
#[inline(always)]
fn gen<T: Rand>(&mut self) -> T where Self: Sized {
Rand::rand(self)
}
/// Return an iterator that will yield an infinite number of randomly
/// generated items.
///
/// # Example
///
/// ```
/// use rand::{thread_rng, Rng};
///
/// let mut rng = thread_rng();
/// let x = rng.gen_iter::<u32>().take(10).collect::<Vec<u32>>();
/// println!("{:?}", x);
/// println!("{:?}", rng.gen_iter::<(f64, bool)>().take(5)
/// .collect::<Vec<(f64, bool)>>());
/// ```
fn gen_iter<'a, T: Rand>(&'a mut self) -> Generator<'a, T, Self> where Self: Sized {
Generator { rng: self, _marker: marker::PhantomData }
}
/// Generate a random value in the range [`low`, `high`).
///
/// This is a convenience wrapper around
/// `distributions::Range`. If this function will be called
/// repeatedly with the same arguments, one should use `Range`, as
/// that will amortize the computations that allow for perfect
/// uniformity, as they only happen on initialization.
///
/// # Panics
///
/// Panics if `low >= high`.
///
/// # Example
///
/// ```rust
/// use rand::{thread_rng, Rng};
///
/// let mut rng = thread_rng();
/// let n: u32 = rng.gen_range(0, 10);
/// println!("{}", n);
/// let m: f64 = rng.gen_range(-40.0f64, 1.3e5f64);
/// println!("{}", m);
/// ```
fn gen_range<T: PartialOrd + SampleRange>(&mut self, low: T, high: T) -> T where Self: Sized {
assert!(low < high, "Rng.gen_range called with low >= high");
Range::new(low, high).ind_sample(self)
}
/// Return a bool with a 1 in n chance of true
///
/// # Example
///
/// ```rust
/// use rand::{thread_rng, Rng};
///
/// let mut rng = thread_rng();
/// println!("{}", rng.gen_weighted_bool(3));
/// ```
fn gen_weighted_bool(&mut self, n: u32) -> bool where Self: Sized {
n <= 1 || self.gen_range(0, n) == 0
}
/// Return an iterator of random characters from the set A-Z,a-z,0-9.
///
/// # Example
///
/// ```rust
/// use rand::{thread_rng, Rng};
///
/// let s: String = thread_rng().gen_ascii_chars().take(10).collect();
/// println!("{}", s);
/// ```
fn gen_ascii_chars<'a>(&'a mut self) -> AsciiGenerator<'a, Self> where Self: Sized {
AsciiGenerator { rng: self }
}
/// Return a random element from `values`.
///
/// Return `None` if `values` is empty.
///
/// # Example
///
/// ```
/// use rand::{thread_rng, Rng};
///
/// let choices = [1, 2, 4, 8, 16, 32];
/// let mut rng = thread_rng();
/// println!("{:?}", rng.choose(&choices));
/// assert_eq!(rng.choose(&choices[..0]), None);
/// ```
fn choose<'a, T>(&mut self, values: &'a [T]) -> Option<&'a T> where Self: Sized {
if values.is_empty() {
None
} else {
Some(&values[self.gen_range(0, values.len())])
}
}
/// Return a mutable pointer to a random element from `values`.
///
/// Return `None` if `values` is empty.
fn choose_mut<'a, T>(&mut self, values: &'a mut [T]) -> Option<&'a mut T> where Self: Sized {
if values.is_empty() {
None
} else {
let len = values.len();
Some(&mut values[self.gen_range(0, len)])
}
}
/// Shuffle a mutable slice in place.
///
/// # Example
///
/// ```rust
/// use rand::{thread_rng, Rng};
///
/// let mut rng = thread_rng();
/// let mut y = [1, 2, 3];
/// rng.shuffle(&mut y);
/// println!("{:?}", y);
/// rng.shuffle(&mut y);
/// println!("{:?}", y);
/// ```
fn shuffle<T>(&mut self, values: &mut [T]) where Self: Sized {
let mut i = values.len();
while i >= 2 {
// invariant: elements with index >= i have been locked in place.
i -= 1;
// lock element i in place.
values.swap(i, self.gen_range(0, i + 1));
}
}
}
impl<'a, R: ?Sized> Rng for &'a mut R where R: Rng {
fn next_u32(&mut self) -> u32 {
(**self).next_u32()
}
fn next_u64(&mut self) -> u64 {
(**self).next_u64()
}
fn next_f32(&mut self) -> f32 {
(**self).next_f32()
}
fn next_f64(&mut self) -> f64 {
(**self).next_f64()
}
fn fill_bytes(&mut self, dest: &mut [u8]) {
(**self).fill_bytes(dest)
}
}
impl<R: ?Sized> Rng for Box<R> where R: Rng {
fn next_u32(&mut self) -> u32 {
(**self).next_u32()
}
fn next_u64(&mut self) -> u64 {
(**self).next_u64()
}
fn next_f32(&mut self) -> f32 {
(**self).next_f32()
}
fn next_f64(&mut self) -> f64 {
(**self).next_f64()
}
fn fill_bytes(&mut self, dest: &mut [u8]) {
(**self).fill_bytes(dest)
}
}
/// Iterator which will generate a stream of random items.
///
/// This iterator is created via the [`gen_iter`] method on [`Rng`].
///
/// [`gen_iter`]: trait.Rng.html#method.gen_iter
/// [`Rng`]: trait.Rng.html
pub struct Generator<'a, T, R:'a> {
rng: &'a mut R,
_marker: marker::PhantomData<fn() -> T>,
}
impl<'a, T: Rand, R: Rng> Iterator for Generator<'a, T, R> {
type Item = T;
fn next(&mut self) -> Option<T> {
Some(self.rng.gen())
}
}
/// Iterator which will continuously generate random ascii characters.
///
/// This iterator is created via the [`gen_ascii_chars`] method on [`Rng`].
///
/// [`gen_ascii_chars`]: trait.Rng.html#method.gen_ascii_chars
/// [`Rng`]: trait.Rng.html
pub struct AsciiGenerator<'a, R:'a> {
rng: &'a mut R,
}
impl<'a, R: Rng> Iterator for AsciiGenerator<'a, R> {
type Item = char;
fn next(&mut self) -> Option<char> {
const GEN_ASCII_STR_CHARSET: &'static [u8] =
b"ABCDEFGHIJKLMNOPQRSTUVWXYZ\
abcdefghijklmnopqrstuvwxyz\
0123456789";
Some(*self.rng.choose(GEN_ASCII_STR_CHARSET).unwrap() as char)
}
}
/// A random number generator that can be explicitly seeded to produce
/// the same stream of randomness multiple times.
pub trait SeedableRng<Seed>: Rng {
/// Reseed an RNG with the given seed.
///
/// # Example
///
/// ```rust
/// use rand::{Rng, SeedableRng, StdRng};
///
/// let seed: &[_] = &[1, 2, 3, 4];
/// let mut rng: StdRng = SeedableRng::from_seed(seed);
/// println!("{}", rng.gen::<f64>());
/// rng.reseed(&[5, 6, 7, 8]);
/// println!("{}", rng.gen::<f64>());
/// ```
fn reseed(&mut self, Seed);
/// Create a new RNG with the given seed.
///
/// # Example
///
/// ```rust
/// use rand::{Rng, SeedableRng, StdRng};
///
/// let seed: &[_] = &[1, 2, 3, 4];
/// let mut rng: StdRng = SeedableRng::from_seed(seed);
/// println!("{}", rng.gen::<f64>());
/// ```
fn from_seed(seed: Seed) -> Self;
}
/// An Xorshift[1] random number
/// generator.
///
/// The Xorshift algorithm is not suitable for cryptographic purposes
/// but is very fast. If you do not know for sure that it fits your
/// requirements, use a more secure one such as `IsaacRng` or `OsRng`.
///
/// [1]: Marsaglia, George (July 2003). ["Xorshift
/// RNGs"](http://www.jstatsoft.org/v08/i14/paper). *Journal of
/// Statistical Software*. Vol. 8 (Issue 14).
#[allow(missing_copy_implementations)]
#[derive(Clone)]
pub struct XorShiftRng {
x: w32,
y: w32,
z: w32,
w: w32,
}
impl XorShiftRng {
/// Creates a new XorShiftRng instance which is not seeded.
///
/// The initial values of this RNG are constants, so all generators created
/// by this function will yield the same stream of random numbers. It is
/// highly recommended that this is created through `SeedableRng` instead of
/// this function
pub fn new_unseeded() -> XorShiftRng {
XorShiftRng {
x: w(0x193a6754),
y: w(0xa8a7d469),
z: w(0x97830e05),
w: w(0x113ba7bb),
}
}
}
impl Rng for XorShiftRng {
#[inline]
fn next_u32(&mut self) -> u32 {
let x = self.x;
let t = x ^ (x << 11);
self.x = self.y;
self.y = self.z;
self.z = self.w;
let w_ = self.w;
self.w = w_ ^ (w_ >> 19) ^ (t ^ (t >> 8));
self.w.0
}
}
impl SeedableRng<[u32; 4]> for XorShiftRng {
/// Reseed an XorShiftRng. This will panic if `seed` is entirely 0.
fn reseed(&mut self, seed: [u32; 4]) {
assert!(!seed.iter().all(|&x| x == 0),
"XorShiftRng.reseed called with an all zero seed.");
self.x = w(seed[0]);
self.y = w(seed[1]);
self.z = w(seed[2]);
self.w = w(seed[3]);
}
/// Create a new XorShiftRng. This will panic if `seed` is entirely 0.
fn from_seed(seed: [u32; 4]) -> XorShiftRng {
assert!(!seed.iter().all(|&x| x == 0),
"XorShiftRng::from_seed called with an all zero seed.");
XorShiftRng {
x: w(seed[0]),
y: w(seed[1]),
z: w(seed[2]),
w: w(seed[3]),
}
}
}
impl Rand for XorShiftRng {
fn rand<R: Rng>(rng: &mut R) -> XorShiftRng {
let mut tuple: (u32, u32, u32, u32) = rng.gen();
while tuple == (0, 0, 0, 0) {
tuple = rng.gen();
}
let (x, y, z, w_) = tuple;
XorShiftRng { x: w(x), y: w(y), z: w(z), w: w(w_) }
}
}
/// A wrapper for generating floating point numbers uniformly in the
/// open interval `(0,1)` (not including either endpoint).
///
/// Use `Closed01` for the closed interval `[0,1]`, and the default
/// `Rand` implementation for `f32` and `f64` for the half-open
/// `[0,1)`.
///
/// # Example
/// ```rust
/// use rand::{random, Open01};
///
/// let Open01(val) = random::<Open01<f32>>();
/// println!("f32 from (0,1): {}", val);
/// ```
pub struct Open01<F>(pub F);
/// A wrapper for generating floating point numbers uniformly in the
/// closed interval `[0,1]` (including both endpoints).
///
/// Use `Open01` for the closed interval `(0,1)`, and the default
/// `Rand` implementation of `f32` and `f64` for the half-open
/// `[0,1)`.
///
/// # Example
///
/// ```rust
/// use rand::{random, Closed01};
///
/// let Closed01(val) = random::<Closed01<f32>>();
/// println!("f32 from [0,1]: {}", val);
/// ```
pub struct Closed01<F>(pub F);
/// The standard RNG. This is designed to be efficient on the current
/// platform.
#[derive(Copy, Clone)]
pub struct StdRng {
rng: IsaacWordRng,
}
impl StdRng {
/// Create a randomly seeded instance of `StdRng`.
///
/// This is a very expensive operation as it has to read
/// randomness from the operating system and use this in an
/// expensive seeding operation. If one is only generating a small
/// number of random numbers, or doesn't need the utmost speed for
/// generating each number, `thread_rng` and/or `random` may be more
/// appropriate.
///
/// Reading the randomness from the OS may fail, and any error is
/// propagated via the `io::Result` return value.
pub fn new() -> io::Result<StdRng> {
OsRng::new().map(|mut r| StdRng { rng: r.gen() })
}
}
impl Rng for StdRng {
#[inline]
fn next_u32(&mut self) -> u32 {
self.rng.next_u32()
}
#[inline]
fn next_u64(&mut self) -> u64 {
self.rng.next_u64()
}
}
impl<'a> SeedableRng<&'a [usize]> for StdRng {
fn reseed(&mut self, seed: &'a [usize]) {
// the internal RNG can just be seeded from the above
// randomness.
self.rng.reseed(unsafe {mem::transmute(seed)})
}
fn from_seed(seed: &'a [usize]) -> StdRng {
StdRng { rng: SeedableRng::from_seed(unsafe {mem::transmute(seed)}) }
}
}
/// Create a weak random number generator with a default algorithm and seed.
///
/// It returns the fastest `Rng` algorithm currently available in Rust without
/// consideration for cryptography or security. If you require a specifically
/// seeded `Rng` for consistency over time you should pick one algorithm and
/// create the `Rng` yourself.
///
/// This will read randomness from the operating system to seed the
/// generator.
pub fn weak_rng() -> XorShiftRng {
match OsRng::new() {
Ok(mut r) => r.gen(),
Err(e) => panic!("weak_rng: failed to create seeded RNG: {:?}", e)
}
}
/// Controls how the thread-local RNG is reseeded.
struct ThreadRngReseeder;
impl reseeding::Reseeder<StdRng> for ThreadRngReseeder {
fn reseed(&mut self, rng: &mut StdRng) {
*rng = match StdRng::new() {
Ok(r) => r,
Err(e) => panic!("could not reseed thread_rng: {}", e)
}
}
}
const THREAD_RNG_RESEED_THRESHOLD: u64 = 32_768;
type ThreadRngInner = reseeding::ReseedingRng<StdRng, ThreadRngReseeder>;
/// The thread-local RNG.
#[derive(Clone)]
pub struct ThreadRng {
rng: Rc<RefCell<ThreadRngInner>>,
}
/// Retrieve the lazily-initialized thread-local random number
/// generator, seeded by the system. Intended to be used in method
/// chaining style, e.g. `thread_rng().gen::<i32>()`.
///
/// The RNG provided will reseed itself from the operating system
/// after generating a certain amount of randomness.
///
/// The internal RNG used is platform and architecture dependent, even
/// if the operating system random number generator is rigged to give
/// the same sequence always. If absolute consistency is required,
/// explicitly select an RNG, e.g. `IsaacRng` or `Isaac64Rng`.
pub fn thread_rng() -> ThreadRng {
// used to make space in TLS for a random number generator
thread_local!(static THREAD_RNG_KEY: Rc<RefCell<ThreadRngInner>> = {
let r = match StdRng::new() {
Ok(r) => r,
Err(e) => panic!("could not initialize thread_rng: {}", e)
};
let rng = reseeding::ReseedingRng::new(r,
THREAD_RNG_RESEED_THRESHOLD,
ThreadRngReseeder);
Rc::new(RefCell::new(rng))
});
ThreadRng { rng: THREAD_RNG_KEY.with(|t| t.clone()) }
}
impl Rng for ThreadRng {
fn next_u32(&mut self) -> u32 {
self.rng.borrow_mut().next_u32()
}
fn next_u64(&mut self) -> u64 {
self.rng.borrow_mut().next_u64()
}
#[inline]
fn fill_bytes(&mut self, bytes: &mut [u8]) {
self.rng.borrow_mut().fill_bytes(bytes)
}
}
/// Generates a random value using the thread-local random number generator.
///
/// `random()` can generate various types of random things, and so may require
/// type hinting to generate the specific type you want.
///
/// This function uses the thread local random number generator. This means
/// that if you're calling `random()` in a loop, caching the generator can
/// increase performance. An example is shown below.
///
/// # Examples
///
/// ```
/// let x = rand::random::<u8>();
/// println!("{}", x);
///
/// let y = rand::random::<f64>();
/// println!("{}", y);
///
/// if rand::random() { // generates a boolean
/// println!("Better lucky than good!");
/// }
/// ```
///
/// Caching the thread local random number generator:
///
/// ```
/// use rand::Rng;
///
/// let mut v = vec![1, 2, 3];
///
/// for x in v.iter_mut() {
/// *x = rand::random()
/// }
///
/// // would be faster as
///
/// let mut rng = rand::thread_rng();
///
/// for x in v.iter_mut() {
/// *x = rng.gen();
/// }
/// ```
#[inline]
pub fn random<T: Rand>() -> T {
thread_rng().gen()
}
/// Randomly sample up to `amount` elements from an iterator.
///
/// # Example
///
/// ```rust
/// use rand::{thread_rng, sample};
///
/// let mut rng = thread_rng();
/// let sample = sample(&mut rng, 1..100, 5);
/// println!("{:?}", sample);
/// ```
pub fn sample<T, I, R>(rng: &mut R, iterable: I, amount: usize) -> Vec<T>
where I: IntoIterator<Item=T>,
R: Rng,
{
let mut iter = iterable.into_iter();
let mut reservoir: Vec<T> = iter.by_ref().take(amount).collect();
// continue unless the iterator was exhausted
if reservoir.len() == amount {
for (i, elem) in iter.enumerate() {
let k = rng.gen_range(0, i + 1 + amount);
if let Some(spot) = reservoir.get_mut(k) {
*spot = elem;
}
}
}
reservoir
}
#[cfg(test)]
mod test {
use super::{Rng, thread_rng, random, SeedableRng, StdRng, sample};
use std::iter::repeat;