-
Notifications
You must be signed in to change notification settings - Fork 13k
/
Copy pathabi.rs
600 lines (533 loc) · 22.1 KB
/
abi.rs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
// Copyright 2012-2016 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
use llvm::{self, ValueRef};
use base;
use build::AllocaFcx;
use common::{type_is_fat_ptr, BlockAndBuilder, C_uint};
use context::CrateContext;
use cabi_x86;
use cabi_x86_64;
use cabi_x86_win64;
use cabi_arm;
use cabi_aarch64;
use cabi_powerpc;
use cabi_powerpc64;
use cabi_s390x;
use cabi_mips;
use cabi_mips64;
use cabi_asmjs;
use machine::{llalign_of_min, llsize_of, llsize_of_alloc};
use type_::Type;
use type_of;
use rustc::hir;
use rustc::ty::{self, Ty};
use libc::c_uint;
use std::cmp;
pub use syntax::abi::Abi;
pub use rustc::ty::layout::{FAT_PTR_ADDR, FAT_PTR_EXTRA};
use rustc::ty::layout::Layout;
#[derive(Clone, Copy, PartialEq, Debug)]
enum ArgKind {
/// Pass the argument directly using the normal converted
/// LLVM type or by coercing to another specified type
Direct,
/// Pass the argument indirectly via a hidden pointer
Indirect,
/// Ignore the argument (useful for empty struct)
Ignore,
}
/// Information about how a specific C type
/// should be passed to or returned from a function
///
/// This is borrowed from clang's ABIInfo.h
#[derive(Clone, Copy, Debug)]
pub struct ArgType {
kind: ArgKind,
/// Original LLVM type
pub original_ty: Type,
/// Sizing LLVM type (pointers are opaque).
/// Unlike original_ty, this is guaranteed to be complete.
///
/// For example, while we're computing the function pointer type in
/// `struct Foo(fn(Foo));`, `original_ty` is still LLVM's `%Foo = {}`.
/// The field type will likely end up being `void(%Foo)*`, but we cannot
/// use `%Foo` to compute properties (e.g. size and alignment) of `Foo`,
/// until `%Foo` is completed by having all of its field types inserted,
/// so `ty` holds the "sizing type" of `Foo`, which replaces all pointers
/// with opaque ones, resulting in `{i8*}` for `Foo`.
/// ABI-specific logic can then look at the size, alignment and fields of
/// `{i8*}` in order to determine how the argument will be passed.
/// Only later will `original_ty` aka `%Foo` be used in the LLVM function
/// pointer type, without ever having introspected it.
pub ty: Type,
/// Signedness for integer types, None for other types
pub signedness: Option<bool>,
/// Coerced LLVM Type
pub cast: Option<Type>,
/// Dummy argument, which is emitted before the real argument
pub pad: Option<Type>,
/// LLVM attributes of argument
pub attrs: llvm::Attributes
}
impl ArgType {
fn new(original_ty: Type, ty: Type) -> ArgType {
ArgType {
kind: ArgKind::Direct,
original_ty: original_ty,
ty: ty,
signedness: None,
cast: None,
pad: None,
attrs: llvm::Attributes::default()
}
}
pub fn make_indirect(&mut self, ccx: &CrateContext) {
assert_eq!(self.kind, ArgKind::Direct);
// Wipe old attributes, likely not valid through indirection.
self.attrs = llvm::Attributes::default();
let llarg_sz = llsize_of_alloc(ccx, self.ty);
// For non-immediate arguments the callee gets its own copy of
// the value on the stack, so there are no aliases. It's also
// program-invisible so can't possibly capture
self.attrs.set(llvm::Attribute::NoAlias)
.set(llvm::Attribute::NoCapture)
.set_dereferenceable(llarg_sz);
self.kind = ArgKind::Indirect;
}
pub fn ignore(&mut self) {
assert_eq!(self.kind, ArgKind::Direct);
self.kind = ArgKind::Ignore;
}
pub fn extend_integer_width_to(&mut self, bits: u64) {
// Only integers have signedness
if let Some(signed) = self.signedness {
if self.ty.int_width() < bits {
self.attrs.set(if signed {
llvm::Attribute::SExt
} else {
llvm::Attribute::ZExt
});
}
}
}
pub fn is_indirect(&self) -> bool {
self.kind == ArgKind::Indirect
}
pub fn is_ignore(&self) -> bool {
self.kind == ArgKind::Ignore
}
/// Get the LLVM type for an lvalue of the original Rust type of
/// this argument/return, i.e. the result of `type_of::type_of`.
pub fn memory_ty(&self, ccx: &CrateContext) -> Type {
if self.original_ty == Type::i1(ccx) {
Type::i8(ccx)
} else {
self.original_ty
}
}
/// Store a direct/indirect value described by this ArgType into a
/// lvalue for the original Rust type of this argument/return.
/// Can be used for both storing formal arguments into Rust variables
/// or results of call/invoke instructions into their destinations.
pub fn store(&self, bcx: &BlockAndBuilder, mut val: ValueRef, dst: ValueRef) {
if self.is_ignore() {
return;
}
let ccx = bcx.ccx();
if self.is_indirect() {
let llsz = llsize_of(ccx, self.ty);
let llalign = llalign_of_min(ccx, self.ty);
base::call_memcpy(bcx, dst, val, llsz, llalign as u32);
} else if let Some(ty) = self.cast {
// FIXME(eddyb): Figure out when the simpler Store is safe, clang
// uses it for i16 -> {i8, i8}, but not for i24 -> {i8, i8, i8}.
let can_store_through_cast_ptr = false;
if can_store_through_cast_ptr {
let cast_dst = bcx.pointercast(dst, ty.ptr_to());
let store = bcx.store(val, cast_dst);
let llalign = llalign_of_min(ccx, self.ty);
unsafe {
llvm::LLVMSetAlignment(store, llalign);
}
} else {
// The actual return type is a struct, but the ABI
// adaptation code has cast it into some scalar type. The
// code that follows is the only reliable way I have
// found to do a transform like i64 -> {i32,i32}.
// Basically we dump the data onto the stack then memcpy it.
//
// Other approaches I tried:
// - Casting rust ret pointer to the foreign type and using Store
// is (a) unsafe if size of foreign type > size of rust type and
// (b) runs afoul of strict aliasing rules, yielding invalid
// assembly under -O (specifically, the store gets removed).
// - Truncating foreign type to correct integral type and then
// bitcasting to the struct type yields invalid cast errors.
// We instead thus allocate some scratch space...
let llscratch = AllocaFcx(bcx.fcx(), ty, "abi_cast");
base::Lifetime::Start.call(bcx, llscratch);
// ...where we first store the value...
bcx.store(val, llscratch);
// ...and then memcpy it to the intended destination.
base::call_memcpy(bcx,
bcx.pointercast(dst, Type::i8p(ccx)),
bcx.pointercast(llscratch, Type::i8p(ccx)),
C_uint(ccx, llsize_of_alloc(ccx, self.ty)),
cmp::min(llalign_of_min(ccx, self.ty),
llalign_of_min(ccx, ty)) as u32);
base::Lifetime::End.call(bcx, llscratch);
}
} else {
if self.original_ty == Type::i1(ccx) {
val = bcx.zext(val, Type::i8(ccx));
}
bcx.store(val, dst);
}
}
pub fn store_fn_arg(&self, bcx: &BlockAndBuilder, idx: &mut usize, dst: ValueRef) {
if self.pad.is_some() {
*idx += 1;
}
if self.is_ignore() {
return;
}
let val = llvm::get_param(bcx.fcx().llfn, *idx as c_uint);
*idx += 1;
self.store(bcx, val, dst);
}
}
/// Metadata describing how the arguments to a native function
/// should be passed in order to respect the native ABI.
///
/// I will do my best to describe this structure, but these
/// comments are reverse-engineered and may be inaccurate. -NDM
#[derive(Clone)]
pub struct FnType {
/// The LLVM types of each argument.
pub args: Vec<ArgType>,
/// LLVM return type.
pub ret: ArgType,
pub variadic: bool,
pub cconv: llvm::CallConv
}
impl FnType {
pub fn new<'a, 'tcx>(ccx: &CrateContext<'a, 'tcx>,
abi: Abi,
sig: &ty::FnSig<'tcx>,
extra_args: &[Ty<'tcx>]) -> FnType {
let mut fn_ty = FnType::unadjusted(ccx, abi, sig, extra_args);
fn_ty.adjust_for_abi(ccx, abi, sig);
fn_ty
}
pub fn unadjusted<'a, 'tcx>(ccx: &CrateContext<'a, 'tcx>,
abi: Abi,
sig: &ty::FnSig<'tcx>,
extra_args: &[Ty<'tcx>]) -> FnType {
use self::Abi::*;
let cconv = match ccx.sess().target.target.adjust_abi(abi) {
RustIntrinsic | PlatformIntrinsic |
Rust | RustCall => llvm::CCallConv,
// It's the ABI's job to select this, not us.
System => bug!("system abi should be selected elsewhere"),
Stdcall => llvm::X86StdcallCallConv,
Fastcall => llvm::X86FastcallCallConv,
Vectorcall => llvm::X86_VectorCall,
C => llvm::CCallConv,
Win64 => llvm::X86_64_Win64,
SysV64 => llvm::X86_64_SysV,
// These API constants ought to be more specific...
Cdecl => llvm::CCallConv,
Aapcs => llvm::CCallConv,
};
let mut inputs = &sig.inputs[..];
let extra_args = if abi == RustCall {
assert!(!sig.variadic && extra_args.is_empty());
match inputs[inputs.len() - 1].sty {
ty::TyTuple(ref tupled_arguments) => {
inputs = &inputs[..inputs.len() - 1];
&tupled_arguments[..]
}
_ => {
bug!("argument to function with \"rust-call\" ABI \
is not a tuple");
}
}
} else {
assert!(sig.variadic || extra_args.is_empty());
extra_args
};
let target = &ccx.sess().target.target;
let win_x64_gnu = target.target_os == "windows"
&& target.arch == "x86_64"
&& target.target_env == "gnu";
let linux_s390x = target.target_os == "linux"
&& target.arch == "s390x"
&& target.target_env == "gnu";
let rust_abi = match abi {
RustIntrinsic | PlatformIntrinsic | Rust | RustCall => true,
_ => false
};
let arg_of = |ty: Ty<'tcx>, is_return: bool| {
if ty.is_bool() {
let llty = Type::i1(ccx);
let mut arg = ArgType::new(llty, llty);
arg.attrs.set(llvm::Attribute::ZExt);
arg
} else {
let mut arg = ArgType::new(type_of::type_of(ccx, ty),
type_of::sizing_type_of(ccx, ty));
if ty.is_integral() {
arg.signedness = Some(ty.is_signed());
}
// Rust enum types that map onto C enums also need to follow
// the target ABI zero-/sign-extension rules.
if let Layout::CEnum { signed, .. } = *ccx.layout_of(ty) {
arg.signedness = Some(signed);
}
if llsize_of_alloc(ccx, arg.ty) == 0 {
// For some forsaken reason, x86_64-pc-windows-gnu
// doesn't ignore zero-sized struct arguments.
// The same is true for s390x-unknown-linux-gnu.
if is_return || rust_abi ||
(!win_x64_gnu && !linux_s390x) {
arg.ignore();
}
}
arg
}
};
let ret_ty = sig.output;
let mut ret = arg_of(ret_ty, true);
if !type_is_fat_ptr(ccx.tcx(), ret_ty) {
// The `noalias` attribute on the return value is useful to a
// function ptr caller.
if let ty::TyBox(_) = ret_ty.sty {
// `Box` pointer return values never alias because ownership
// is transferred
ret.attrs.set(llvm::Attribute::NoAlias);
}
// We can also mark the return value as `dereferenceable` in certain cases
match ret_ty.sty {
// These are not really pointers but pairs, (pointer, len)
ty::TyRef(_, ty::TypeAndMut { ty, .. }) |
ty::TyBox(ty) => {
let llty = type_of::sizing_type_of(ccx, ty);
let llsz = llsize_of_alloc(ccx, llty);
ret.attrs.set_dereferenceable(llsz);
}
_ => {}
}
}
let mut args = Vec::with_capacity(inputs.len() + extra_args.len());
// Handle safe Rust thin and fat pointers.
let rust_ptr_attrs = |ty: Ty<'tcx>, arg: &mut ArgType| match ty.sty {
// `Box` pointer parameters never alias because ownership is transferred
ty::TyBox(inner) => {
arg.attrs.set(llvm::Attribute::NoAlias);
Some(inner)
}
ty::TyRef(b, mt) => {
use rustc::ty::{BrAnon, ReLateBound};
// `&mut` pointer parameters never alias other parameters, or mutable global data
//
// `&T` where `T` contains no `UnsafeCell<U>` is immutable, and can be marked as
// both `readonly` and `noalias`, as LLVM's definition of `noalias` is based solely
// on memory dependencies rather than pointer equality
let interior_unsafe = mt.ty.type_contents(ccx.tcx()).interior_unsafe();
if mt.mutbl != hir::MutMutable && !interior_unsafe {
arg.attrs.set(llvm::Attribute::NoAlias);
}
if mt.mutbl == hir::MutImmutable && !interior_unsafe {
arg.attrs.set(llvm::Attribute::ReadOnly);
}
// When a reference in an argument has no named lifetime, it's
// impossible for that reference to escape this function
// (returned or stored beyond the call by a closure).
if let ReLateBound(_, BrAnon(_)) = *b {
arg.attrs.set(llvm::Attribute::NoCapture);
}
Some(mt.ty)
}
_ => None
};
for ty in inputs.iter().chain(extra_args.iter()) {
let mut arg = arg_of(ty, false);
if type_is_fat_ptr(ccx.tcx(), ty) {
let original_tys = arg.original_ty.field_types();
let sizing_tys = arg.ty.field_types();
assert_eq!((original_tys.len(), sizing_tys.len()), (2, 2));
let mut data = ArgType::new(original_tys[0], sizing_tys[0]);
let mut info = ArgType::new(original_tys[1], sizing_tys[1]);
if let Some(inner) = rust_ptr_attrs(ty, &mut data) {
data.attrs.set(llvm::Attribute::NonNull);
if ccx.tcx().struct_tail(inner).is_trait() {
info.attrs.set(llvm::Attribute::NonNull);
}
}
args.push(data);
args.push(info);
} else {
if let Some(inner) = rust_ptr_attrs(ty, &mut arg) {
let llty = type_of::sizing_type_of(ccx, inner);
let llsz = llsize_of_alloc(ccx, llty);
arg.attrs.set_dereferenceable(llsz);
}
args.push(arg);
}
}
FnType {
args: args,
ret: ret,
variadic: sig.variadic,
cconv: cconv
}
}
pub fn adjust_for_abi<'a, 'tcx>(&mut self,
ccx: &CrateContext<'a, 'tcx>,
abi: Abi,
sig: &ty::FnSig<'tcx>) {
if abi == Abi::Rust || abi == Abi::RustCall ||
abi == Abi::RustIntrinsic || abi == Abi::PlatformIntrinsic {
let fixup = |arg: &mut ArgType| {
let mut llty = arg.ty;
// Replace newtypes with their inner-most type.
while llty.kind() == llvm::TypeKind::Struct {
let inner = llty.field_types();
if inner.len() != 1 {
break;
}
llty = inner[0];
}
if !llty.is_aggregate() {
// Scalars and vectors, always immediate.
if llty != arg.ty {
// Needs a cast as we've unpacked a newtype.
arg.cast = Some(llty);
}
return;
}
let size = llsize_of_alloc(ccx, llty);
if size > llsize_of_alloc(ccx, ccx.int_type()) {
arg.make_indirect(ccx);
} else if size > 0 {
// We want to pass small aggregates as immediates, but using
// a LLVM aggregate type for this leads to bad optimizations,
// so we pick an appropriately sized integer type instead.
arg.cast = Some(Type::ix(ccx, size * 8));
}
};
// Fat pointers are returned by-value.
if !self.ret.is_ignore() {
if !type_is_fat_ptr(ccx.tcx(), sig.output) {
fixup(&mut self.ret);
}
}
for arg in &mut self.args {
if arg.is_ignore() { continue; }
fixup(arg);
}
if self.ret.is_indirect() {
self.ret.attrs.set(llvm::Attribute::StructRet);
}
return;
}
match &ccx.sess().target.target.arch[..] {
"x86" => cabi_x86::compute_abi_info(ccx, self),
"x86_64" => if abi == Abi::SysV64 {
cabi_x86_64::compute_abi_info(ccx, self);
} else if abi == Abi::Win64 || ccx.sess().target.target.options.is_like_windows {
cabi_x86_win64::compute_abi_info(ccx, self);
} else {
cabi_x86_64::compute_abi_info(ccx, self);
},
"aarch64" => cabi_aarch64::compute_abi_info(ccx, self),
"arm" => {
let flavor = if ccx.sess().target.target.target_os == "ios" {
cabi_arm::Flavor::Ios
} else {
cabi_arm::Flavor::General
};
cabi_arm::compute_abi_info(ccx, self, flavor);
},
"mips" => cabi_mips::compute_abi_info(ccx, self),
"mips64" => cabi_mips64::compute_abi_info(ccx, self),
"powerpc" => cabi_powerpc::compute_abi_info(ccx, self),
"powerpc64" => cabi_powerpc64::compute_abi_info(ccx, self),
"s390x" => cabi_s390x::compute_abi_info(ccx, self),
"asmjs" => cabi_asmjs::compute_abi_info(ccx, self),
a => ccx.sess().fatal(&format!("unrecognized arch \"{}\" in target specification", a))
}
if self.ret.is_indirect() {
self.ret.attrs.set(llvm::Attribute::StructRet);
}
}
pub fn llvm_type(&self, ccx: &CrateContext) -> Type {
let mut llargument_tys = Vec::new();
let llreturn_ty = if self.ret.is_ignore() {
Type::void(ccx)
} else if self.ret.is_indirect() {
llargument_tys.push(self.ret.original_ty.ptr_to());
Type::void(ccx)
} else {
self.ret.cast.unwrap_or(self.ret.original_ty)
};
for arg in &self.args {
if arg.is_ignore() {
continue;
}
// add padding
if let Some(ty) = arg.pad {
llargument_tys.push(ty);
}
let llarg_ty = if arg.is_indirect() {
arg.original_ty.ptr_to()
} else {
arg.cast.unwrap_or(arg.original_ty)
};
llargument_tys.push(llarg_ty);
}
if self.variadic {
Type::variadic_func(&llargument_tys, &llreturn_ty)
} else {
Type::func(&llargument_tys, &llreturn_ty)
}
}
pub fn apply_attrs_llfn(&self, llfn: ValueRef) {
let mut i = if self.ret.is_indirect() { 1 } else { 0 };
if !self.ret.is_ignore() {
self.ret.attrs.apply_llfn(llvm::AttributePlace::Argument(i), llfn);
}
i += 1;
for arg in &self.args {
if !arg.is_ignore() {
if arg.pad.is_some() { i += 1; }
arg.attrs.apply_llfn(llvm::AttributePlace::Argument(i), llfn);
i += 1;
}
}
}
pub fn apply_attrs_callsite(&self, callsite: ValueRef) {
let mut i = if self.ret.is_indirect() { 1 } else { 0 };
if !self.ret.is_ignore() {
self.ret.attrs.apply_callsite(llvm::AttributePlace::Argument(i), callsite);
}
i += 1;
for arg in &self.args {
if !arg.is_ignore() {
if arg.pad.is_some() { i += 1; }
arg.attrs.apply_callsite(llvm::AttributePlace::Argument(i), callsite);
i += 1;
}
}
if self.cconv != llvm::CCallConv {
llvm::SetInstructionCallConv(callsite, self.cconv);
}
}
}