-
Notifications
You must be signed in to change notification settings - Fork 12.7k
/
const_ptr.rs
1778 lines (1713 loc) · 72.2 KB
/
const_ptr.rs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
use super::*;
use crate::cmp::Ordering::{Equal, Greater, Less};
use crate::intrinsics::const_eval_select;
use crate::mem::SizedTypeProperties;
use crate::slice::{self, SliceIndex};
impl<T: ?Sized> *const T {
/// Returns `true` if the pointer is null.
///
/// Note that unsized types have many possible null pointers, as only the
/// raw data pointer is considered, not their length, vtable, etc.
/// Therefore, two pointers that are null may still not compare equal to
/// each other.
///
/// ## Behavior during const evaluation
///
/// When this function is used during const evaluation, it may return `false` for pointers
/// that turn out to be null at runtime. Specifically, when a pointer to some memory
/// is offset beyond its bounds in such a way that the resulting pointer is null,
/// the function will still return `false`. There is no way for CTFE to know
/// the absolute position of that memory, so we cannot tell if the pointer is
/// null or not.
///
/// # Examples
///
/// ```
/// let s: &str = "Follow the rabbit";
/// let ptr: *const u8 = s.as_ptr();
/// assert!(!ptr.is_null());
/// ```
#[stable(feature = "rust1", since = "1.0.0")]
#[rustc_const_unstable(feature = "const_ptr_is_null", issue = "74939")]
#[rustc_diagnostic_item = "ptr_const_is_null"]
#[inline]
pub const fn is_null(self) -> bool {
#[inline]
fn runtime_impl(ptr: *const u8) -> bool {
ptr.addr() == 0
}
#[inline]
const fn const_impl(ptr: *const u8) -> bool {
match (ptr).guaranteed_eq(null_mut()) {
Some(res) => res,
// To remain maximally convervative, we stop execution when we don't
// know whether the pointer is null or not.
// We can *not* return `false` here, that would be unsound in `NonNull::new`!
None => panic!("null-ness of this pointer cannot be determined in const context"),
}
}
// Compare via a cast to a thin pointer, so fat pointers are only
// considering their "data" part for null-ness.
const_eval_select((self as *const u8,), const_impl, runtime_impl)
}
/// Casts to a pointer of another type.
#[stable(feature = "ptr_cast", since = "1.38.0")]
#[rustc_const_stable(feature = "const_ptr_cast", since = "1.38.0")]
#[rustc_diagnostic_item = "const_ptr_cast"]
#[inline(always)]
pub const fn cast<U>(self) -> *const U {
self as _
}
/// Uses the pointer value in a new pointer of another type.
///
/// In case `meta` is a (fat) pointer to an unsized type, this operation
/// will ignore the pointer part, whereas for (thin) pointers to sized
/// types, this has the same effect as a simple cast.
///
/// The resulting pointer will have provenance of `self`, i.e., for a fat
/// pointer, this operation is semantically the same as creating a new
/// fat pointer with the data pointer value of `self` but the metadata of
/// `meta`.
///
/// # Examples
///
/// This function is primarily useful for allowing byte-wise pointer
/// arithmetic on potentially fat pointers:
///
/// ```
/// #![feature(set_ptr_value)]
/// # use core::fmt::Debug;
/// let arr: [i32; 3] = [1, 2, 3];
/// let mut ptr = arr.as_ptr() as *const dyn Debug;
/// let thin = ptr as *const u8;
/// unsafe {
/// ptr = thin.add(8).with_metadata_of(ptr);
/// # assert_eq!(*(ptr as *const i32), 3);
/// println!("{:?}", &*ptr); // will print "3"
/// }
/// ```
#[unstable(feature = "set_ptr_value", issue = "75091")]
#[rustc_const_unstable(feature = "set_ptr_value", issue = "75091")]
#[must_use = "returns a new pointer rather than modifying its argument"]
#[inline]
pub const fn with_metadata_of<U>(self, meta: *const U) -> *const U
where
U: ?Sized,
{
from_raw_parts::<U>(self as *const (), metadata(meta))
}
/// Changes constness without changing the type.
///
/// This is a bit safer than `as` because it wouldn't silently change the type if the code is
/// refactored.
#[stable(feature = "ptr_const_cast", since = "1.65.0")]
#[rustc_const_stable(feature = "ptr_const_cast", since = "1.65.0")]
#[rustc_diagnostic_item = "ptr_cast_mut"]
#[inline(always)]
pub const fn cast_mut(self) -> *mut T {
self as _
}
/// Gets the "address" portion of the pointer.
///
/// This is similar to `self as usize`, which semantically discards *provenance* and
/// *address-space* information. However, unlike `self as usize`, casting the returned address
/// back to a pointer yields a [pointer without provenance][without_provenance], which is undefined behavior to dereference. To
/// properly restore the lost information and obtain a dereferenceable pointer, use
/// [`with_addr`][pointer::with_addr] or [`map_addr`][pointer::map_addr].
///
/// If using those APIs is not possible because there is no way to preserve a pointer with the
/// required provenance, then Strict Provenance might not be for you. Use pointer-integer casts
/// or [`expose_provenance`][pointer::expose_provenance] and [`with_exposed_provenance`][with_exposed_provenance]
/// instead. However, note that this makes your code less portable and less amenable to tools
/// that check for compliance with the Rust memory model.
///
/// On most platforms this will produce a value with the same bytes as the original
/// pointer, because all the bytes are dedicated to describing the address.
/// Platforms which need to store additional information in the pointer may
/// perform a change of representation to produce a value containing only the address
/// portion of the pointer. What that means is up to the platform to define.
///
/// This API and its claimed semantics are part of the Strict Provenance experiment, and as such
/// might change in the future (including possibly weakening this so it becomes wholly
/// equivalent to `self as usize`). See the [module documentation][crate::ptr] for details.
#[must_use]
#[inline(always)]
#[unstable(feature = "strict_provenance", issue = "95228")]
pub fn addr(self) -> usize {
// FIXME(strict_provenance_magic): I am magic and should be a compiler intrinsic.
// SAFETY: Pointer-to-integer transmutes are valid (if you are okay with losing the
// provenance).
unsafe { mem::transmute(self.cast::<()>()) }
}
/// Exposes the "provenance" part of the pointer for future use in
/// [`with_exposed_provenance`][] and returns the "address" portion.
///
/// This is equivalent to `self as usize`, which semantically discards *provenance* and
/// *address-space* information. Furthermore, this (like the `as` cast) has the implicit
/// side-effect of marking the provenance as 'exposed', so on platforms that support it you can
/// later call [`with_exposed_provenance`][] to reconstitute the original pointer including its
/// provenance. (Reconstructing address space information, if required, is your responsibility.)
///
/// Using this method means that code is *not* following [Strict
/// Provenance][super#strict-provenance] rules. Supporting
/// [`with_exposed_provenance`][] complicates specification and reasoning and may not be supported by
/// tools that help you to stay conformant with the Rust memory model, so it is recommended to
/// use [`addr`][pointer::addr] wherever possible.
///
/// On most platforms this will produce a value with the same bytes as the original pointer,
/// because all the bytes are dedicated to describing the address. Platforms which need to store
/// additional information in the pointer may not support this operation, since the 'expose'
/// side-effect which is required for [`with_exposed_provenance`][] to work is typically not
/// available.
///
/// It is unclear whether this method can be given a satisfying unambiguous specification. This
/// API and its claimed semantics are part of [Exposed Provenance][super#exposed-provenance].
///
/// [`with_exposed_provenance`]: with_exposed_provenance
#[must_use]
#[inline(always)]
#[unstable(feature = "exposed_provenance", issue = "95228")]
pub fn expose_provenance(self) -> usize {
// FIXME(strict_provenance_magic): I am magic and should be a compiler intrinsic.
self.cast::<()>() as usize
}
/// Creates a new pointer with the given address.
///
/// This performs the same operation as an `addr as ptr` cast, but copies
/// the *address-space* and *provenance* of `self` to the new pointer.
/// This allows us to dynamically preserve and propagate this important
/// information in a way that is otherwise impossible with a unary cast.
///
/// This is equivalent to using [`wrapping_offset`][pointer::wrapping_offset] to offset
/// `self` to the given address, and therefore has all the same capabilities and restrictions.
///
/// This API and its claimed semantics are part of the Strict Provenance experiment,
/// see the [module documentation][crate::ptr] for details.
#[must_use]
#[inline]
#[unstable(feature = "strict_provenance", issue = "95228")]
pub fn with_addr(self, addr: usize) -> Self {
// FIXME(strict_provenance_magic): I am magic and should be a compiler intrinsic.
//
// In the mean-time, this operation is defined to be "as if" it was
// a wrapping_offset, so we can emulate it as such. This should properly
// restore pointer provenance even under today's compiler.
let self_addr = self.addr() as isize;
let dest_addr = addr as isize;
let offset = dest_addr.wrapping_sub(self_addr);
// This is the canonical desugaring of this operation
self.wrapping_byte_offset(offset)
}
/// Creates a new pointer by mapping `self`'s address to a new one.
///
/// This is a convenience for [`with_addr`][pointer::with_addr], see that method for details.
///
/// This API and its claimed semantics are part of the Strict Provenance experiment,
/// see the [module documentation][crate::ptr] for details.
#[must_use]
#[inline]
#[unstable(feature = "strict_provenance", issue = "95228")]
pub fn map_addr(self, f: impl FnOnce(usize) -> usize) -> Self {
self.with_addr(f(self.addr()))
}
/// Decompose a (possibly wide) pointer into its data pointer and metadata components.
///
/// The pointer can be later reconstructed with [`from_raw_parts`].
#[unstable(feature = "ptr_metadata", issue = "81513")]
#[rustc_const_unstable(feature = "ptr_metadata", issue = "81513")]
#[inline]
pub const fn to_raw_parts(self) -> (*const (), <T as super::Pointee>::Metadata) {
(self.cast(), metadata(self))
}
/// Returns `None` if the pointer is null, or else returns a shared reference to
/// the value wrapped in `Some`. If the value may be uninitialized, [`as_uninit_ref`]
/// must be used instead.
///
/// [`as_uninit_ref`]: #method.as_uninit_ref
///
/// # Safety
///
/// When calling this method, you have to ensure that *either* the pointer is null *or*
/// the pointer is [convertible to a reference](crate::ptr#pointer-to-reference-conversion).
///
/// # Examples
///
/// ```
/// let ptr: *const u8 = &10u8 as *const u8;
///
/// unsafe {
/// if let Some(val_back) = ptr.as_ref() {
/// assert_eq!(val_back, &10);
/// }
/// }
/// ```
///
/// # Null-unchecked version
///
/// If you are sure the pointer can never be null and are looking for some kind of
/// `as_ref_unchecked` that returns the `&T` instead of `Option<&T>`, know that you can
/// dereference the pointer directly.
///
/// ```
/// let ptr: *const u8 = &10u8 as *const u8;
///
/// unsafe {
/// let val_back = &*ptr;
/// assert_eq!(val_back, &10);
/// }
/// ```
#[stable(feature = "ptr_as_ref", since = "1.9.0")]
#[rustc_const_unstable(feature = "const_ptr_is_null", issue = "74939")]
#[inline]
pub const unsafe fn as_ref<'a>(self) -> Option<&'a T> {
// SAFETY: the caller must guarantee that `self` is valid
// for a reference if it isn't null.
if self.is_null() { None } else { unsafe { Some(&*self) } }
}
/// Returns a shared reference to the value behind the pointer.
/// If the pointer may be null or the value may be uninitialized, [`as_uninit_ref`] must be used instead.
/// If the pointer may be null, but the value is known to have been initialized, [`as_ref`] must be used instead.
///
/// [`as_ref`]: #method.as_ref
/// [`as_uninit_ref`]: #method.as_uninit_ref
///
/// # Safety
///
/// When calling this method, you have to ensure that
/// the pointer is [convertible to a reference](crate::ptr#pointer-to-reference-conversion).
///
/// # Examples
///
/// ```
/// #![feature(ptr_as_ref_unchecked)]
/// let ptr: *const u8 = &10u8 as *const u8;
///
/// unsafe {
/// assert_eq!(ptr.as_ref_unchecked(), &10);
/// }
/// ```
// FIXME: mention it in the docs for `as_ref` and `as_uninit_ref` once stabilized.
#[unstable(feature = "ptr_as_ref_unchecked", issue = "122034")]
#[rustc_const_unstable(feature = "ptr_as_ref_unchecked", issue = "122034")]
#[inline]
#[must_use]
pub const unsafe fn as_ref_unchecked<'a>(self) -> &'a T {
// SAFETY: the caller must guarantee that `self` is valid for a reference
unsafe { &*self }
}
/// Returns `None` if the pointer is null, or else returns a shared reference to
/// the value wrapped in `Some`. In contrast to [`as_ref`], this does not require
/// that the value has to be initialized.
///
/// [`as_ref`]: #method.as_ref
///
/// # Safety
///
/// When calling this method, you have to ensure that *either* the pointer is null *or*
/// the pointer is [convertible to a reference](crate::ptr#pointer-to-reference-conversion).
///
/// # Examples
///
/// ```
/// #![feature(ptr_as_uninit)]
///
/// let ptr: *const u8 = &10u8 as *const u8;
///
/// unsafe {
/// if let Some(val_back) = ptr.as_uninit_ref() {
/// assert_eq!(val_back.assume_init(), 10);
/// }
/// }
/// ```
#[inline]
#[unstable(feature = "ptr_as_uninit", issue = "75402")]
#[rustc_const_unstable(feature = "ptr_as_uninit", issue = "75402")]
pub const unsafe fn as_uninit_ref<'a>(self) -> Option<&'a MaybeUninit<T>>
where
T: Sized,
{
// SAFETY: the caller must guarantee that `self` meets all the
// requirements for a reference.
if self.is_null() { None } else { Some(unsafe { &*(self as *const MaybeUninit<T>) }) }
}
/// Adds an offset to a pointer.
///
/// `count` is in units of T; e.g., a `count` of 3 represents a pointer
/// offset of `3 * size_of::<T>()` bytes.
///
/// # Safety
///
/// If any of the following conditions are violated, the result is Undefined Behavior:
///
/// * The computed offset, `count * size_of::<T>()` bytes, must not overflow `isize`.
///
/// * If the computed offset is non-zero, then `self` must be derived from a pointer to some
/// [allocated object], and the entire memory range between `self` and the result must be in
/// bounds of that allocated object. In particular, this range must not "wrap around" the edge
/// of the address space.
///
/// Allocated objects can never be larger than `isize::MAX` bytes, so if the computed offset
/// stays in bounds of the allocated object, it is guaranteed to satisfy the first requirement.
/// This implies, for instance, that `vec.as_ptr().add(vec.len())` (for `vec: Vec<T>`) is always
/// safe.
///
/// Consider using [`wrapping_offset`] instead if these constraints are
/// difficult to satisfy. The only advantage of this method is that it
/// enables more aggressive compiler optimizations.
///
/// [`wrapping_offset`]: #method.wrapping_offset
/// [allocated object]: crate::ptr#allocated-object
///
/// # Examples
///
/// ```
/// let s: &str = "123";
/// let ptr: *const u8 = s.as_ptr();
///
/// unsafe {
/// assert_eq!(*ptr.offset(1) as char, '2');
/// assert_eq!(*ptr.offset(2) as char, '3');
/// }
/// ```
#[stable(feature = "rust1", since = "1.0.0")]
#[must_use = "returns a new pointer rather than modifying its argument"]
#[rustc_const_stable(feature = "const_ptr_offset", since = "1.61.0")]
#[inline(always)]
#[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
pub const unsafe fn offset(self, count: isize) -> *const T
where
T: Sized,
{
// SAFETY: the caller must uphold the safety contract for `offset`.
unsafe { intrinsics::offset(self, count) }
}
/// Calculates the offset from a pointer in bytes.
///
/// `count` is in units of **bytes**.
///
/// This is purely a convenience for casting to a `u8` pointer and
/// using [offset][pointer::offset] on it. See that method for documentation
/// and safety requirements.
///
/// For non-`Sized` pointees this operation changes only the data pointer,
/// leaving the metadata untouched.
#[must_use]
#[inline(always)]
#[stable(feature = "pointer_byte_offsets", since = "1.75.0")]
#[rustc_const_stable(feature = "const_pointer_byte_offsets", since = "1.75.0")]
#[rustc_allow_const_fn_unstable(set_ptr_value)]
#[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
pub const unsafe fn byte_offset(self, count: isize) -> Self {
// SAFETY: the caller must uphold the safety contract for `offset`.
unsafe { self.cast::<u8>().offset(count).with_metadata_of(self) }
}
/// Calculates the offset from a pointer using wrapping arithmetic.
///
/// `count` is in units of T; e.g., a `count` of 3 represents a pointer
/// offset of `3 * size_of::<T>()` bytes.
///
/// # Safety
///
/// This operation itself is always safe, but using the resulting pointer is not.
///
/// The resulting pointer "remembers" the [allocated object] that `self` points to; it must not
/// be used to read or write other allocated objects.
///
/// In other words, `let z = x.wrapping_offset((y as isize) - (x as isize))` does *not* make `z`
/// the same as `y` even if we assume `T` has size `1` and there is no overflow: `z` is still
/// attached to the object `x` is attached to, and dereferencing it is Undefined Behavior unless
/// `x` and `y` point into the same allocated object.
///
/// Compared to [`offset`], this method basically delays the requirement of staying within the
/// same allocated object: [`offset`] is immediate Undefined Behavior when crossing object
/// boundaries; `wrapping_offset` produces a pointer but still leads to Undefined Behavior if a
/// pointer is dereferenced when it is out-of-bounds of the object it is attached to. [`offset`]
/// can be optimized better and is thus preferable in performance-sensitive code.
///
/// The delayed check only considers the value of the pointer that was dereferenced, not the
/// intermediate values used during the computation of the final result. For example,
/// `x.wrapping_offset(o).wrapping_offset(o.wrapping_neg())` is always the same as `x`. In other
/// words, leaving the allocated object and then re-entering it later is permitted.
///
/// [`offset`]: #method.offset
/// [allocated object]: crate::ptr#allocated-object
///
/// # Examples
///
/// ```
/// # use std::fmt::Write;
/// // Iterate using a raw pointer in increments of two elements
/// let data = [1u8, 2, 3, 4, 5];
/// let mut ptr: *const u8 = data.as_ptr();
/// let step = 2;
/// let end_rounded_up = ptr.wrapping_offset(6);
///
/// let mut out = String::new();
/// while ptr != end_rounded_up {
/// unsafe {
/// write!(&mut out, "{}, ", *ptr).unwrap();
/// }
/// ptr = ptr.wrapping_offset(step);
/// }
/// assert_eq!(out.as_str(), "1, 3, 5, ");
/// ```
#[stable(feature = "ptr_wrapping_offset", since = "1.16.0")]
#[must_use = "returns a new pointer rather than modifying its argument"]
#[rustc_const_stable(feature = "const_ptr_offset", since = "1.61.0")]
#[inline(always)]
pub const fn wrapping_offset(self, count: isize) -> *const T
where
T: Sized,
{
// SAFETY: the `arith_offset` intrinsic has no prerequisites to be called.
unsafe { intrinsics::arith_offset(self, count) }
}
/// Calculates the offset from a pointer in bytes using wrapping arithmetic.
///
/// `count` is in units of **bytes**.
///
/// This is purely a convenience for casting to a `u8` pointer and
/// using [wrapping_offset][pointer::wrapping_offset] on it. See that method
/// for documentation.
///
/// For non-`Sized` pointees this operation changes only the data pointer,
/// leaving the metadata untouched.
#[must_use]
#[inline(always)]
#[stable(feature = "pointer_byte_offsets", since = "1.75.0")]
#[rustc_const_stable(feature = "const_pointer_byte_offsets", since = "1.75.0")]
#[rustc_allow_const_fn_unstable(set_ptr_value)]
pub const fn wrapping_byte_offset(self, count: isize) -> Self {
self.cast::<u8>().wrapping_offset(count).with_metadata_of(self)
}
/// Masks out bits of the pointer according to a mask.
///
/// This is convenience for `ptr.map_addr(|a| a & mask)`.
///
/// For non-`Sized` pointees this operation changes only the data pointer,
/// leaving the metadata untouched.
///
/// ## Examples
///
/// ```
/// #![feature(ptr_mask, strict_provenance)]
/// let v = 17_u32;
/// let ptr: *const u32 = &v;
///
/// // `u32` is 4 bytes aligned,
/// // which means that lower 2 bits are always 0.
/// let tag_mask = 0b11;
/// let ptr_mask = !tag_mask;
///
/// // We can store something in these lower bits
/// let tagged_ptr = ptr.map_addr(|a| a | 0b10);
///
/// // Get the "tag" back
/// let tag = tagged_ptr.addr() & tag_mask;
/// assert_eq!(tag, 0b10);
///
/// // Note that `tagged_ptr` is unaligned, it's UB to read from it.
/// // To get original pointer `mask` can be used:
/// let masked_ptr = tagged_ptr.mask(ptr_mask);
/// assert_eq!(unsafe { *masked_ptr }, 17);
/// ```
#[unstable(feature = "ptr_mask", issue = "98290")]
#[must_use = "returns a new pointer rather than modifying its argument"]
#[inline(always)]
pub fn mask(self, mask: usize) -> *const T {
intrinsics::ptr_mask(self.cast::<()>(), mask).with_metadata_of(self)
}
/// Calculates the distance between two pointers. The returned value is in
/// units of T: the distance in bytes divided by `mem::size_of::<T>()`.
///
/// This is equivalent to `(self as isize - origin as isize) / (mem::size_of::<T>() as isize)`,
/// except that it has a lot more opportunities for UB, in exchange for the compiler
/// better understanding what you are doing.
///
/// The primary motivation of this method is for computing the `len` of an array/slice
/// of `T` that you are currently representing as a "start" and "end" pointer
/// (and "end" is "one past the end" of the array).
/// In that case, `end.offset_from(start)` gets you the length of the array.
///
/// All of the following safety requirements are trivially satisfied for this usecase.
///
/// [`offset`]: #method.offset
///
/// # Safety
///
/// If any of the following conditions are violated, the result is Undefined Behavior:
///
/// * `self` and `origin` must either
///
/// * point to the same address, or
/// * both be *derived from* a pointer to the same [allocated object], and the memory range between
/// the two pointers must be in bounds of that object. (See below for an example.)
///
/// * The distance between the pointers, in bytes, must be an exact multiple
/// of the size of `T`.
///
/// As a consequence, the absolute distance between the pointers, in bytes, computed on
/// mathematical integers (without "wrapping around"), cannot overflow an `isize`. This is
/// implied by the in-bounds requirement, and the fact that no allocated object can be larger
/// than `isize::MAX` bytes.
///
/// The requirement for pointers to be derived from the same allocated object is primarily
/// needed for `const`-compatibility: the distance between pointers into *different* allocated
/// objects is not known at compile-time. However, the requirement also exists at
/// runtime and may be exploited by optimizations. If you wish to compute the difference between
/// pointers that are not guaranteed to be from the same allocation, use `(self as isize -
/// origin as isize) / mem::size_of::<T>()`.
// FIXME: recommend `addr()` instead of `as usize` once that is stable.
///
/// [`add`]: #method.add
/// [allocated object]: crate::ptr#allocated-object
///
/// # Panics
///
/// This function panics if `T` is a Zero-Sized Type ("ZST").
///
/// # Examples
///
/// Basic usage:
///
/// ```
/// let a = [0; 5];
/// let ptr1: *const i32 = &a[1];
/// let ptr2: *const i32 = &a[3];
/// unsafe {
/// assert_eq!(ptr2.offset_from(ptr1), 2);
/// assert_eq!(ptr1.offset_from(ptr2), -2);
/// assert_eq!(ptr1.offset(2), ptr2);
/// assert_eq!(ptr2.offset(-2), ptr1);
/// }
/// ```
///
/// *Incorrect* usage:
///
/// ```rust,no_run
/// let ptr1 = Box::into_raw(Box::new(0u8)) as *const u8;
/// let ptr2 = Box::into_raw(Box::new(1u8)) as *const u8;
/// let diff = (ptr2 as isize).wrapping_sub(ptr1 as isize);
/// // Make ptr2_other an "alias" of ptr2.add(1), but derived from ptr1.
/// let ptr2_other = (ptr1 as *const u8).wrapping_offset(diff).wrapping_offset(1);
/// assert_eq!(ptr2 as usize, ptr2_other as usize);
/// // Since ptr2_other and ptr2 are derived from pointers to different objects,
/// // computing their offset is undefined behavior, even though
/// // they point to addresses that are in-bounds of the same object!
/// unsafe {
/// let one = ptr2_other.offset_from(ptr2); // Undefined Behavior! ⚠️
/// }
/// ```
#[stable(feature = "ptr_offset_from", since = "1.47.0")]
#[rustc_const_stable(feature = "const_ptr_offset_from", since = "1.65.0")]
#[inline]
#[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
pub const unsafe fn offset_from(self, origin: *const T) -> isize
where
T: Sized,
{
let pointee_size = mem::size_of::<T>();
assert!(0 < pointee_size && pointee_size <= isize::MAX as usize);
// SAFETY: the caller must uphold the safety contract for `ptr_offset_from`.
unsafe { intrinsics::ptr_offset_from(self, origin) }
}
/// Calculates the distance between two pointers. The returned value is in
/// units of **bytes**.
///
/// This is purely a convenience for casting to a `u8` pointer and
/// using [`offset_from`][pointer::offset_from] on it. See that method for
/// documentation and safety requirements.
///
/// For non-`Sized` pointees this operation considers only the data pointers,
/// ignoring the metadata.
#[inline(always)]
#[stable(feature = "pointer_byte_offsets", since = "1.75.0")]
#[rustc_const_stable(feature = "const_pointer_byte_offsets", since = "1.75.0")]
#[rustc_allow_const_fn_unstable(set_ptr_value)]
#[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
pub const unsafe fn byte_offset_from<U: ?Sized>(self, origin: *const U) -> isize {
// SAFETY: the caller must uphold the safety contract for `offset_from`.
unsafe { self.cast::<u8>().offset_from(origin.cast::<u8>()) }
}
/// Calculates the distance between two pointers, *where it's known that
/// `self` is equal to or greater than `origin`*. The returned value is in
/// units of T: the distance in bytes is divided by `mem::size_of::<T>()`.
///
/// This computes the same value that [`offset_from`](#method.offset_from)
/// would compute, but with the added precondition that the offset is
/// guaranteed to be non-negative. This method is equivalent to
/// `usize::try_from(self.offset_from(origin)).unwrap_unchecked()`,
/// but it provides slightly more information to the optimizer, which can
/// sometimes allow it to optimize slightly better with some backends.
///
/// This method can be though of as recovering the `count` that was passed
/// to [`add`](#method.add) (or, with the parameters in the other order,
/// to [`sub`](#method.sub)). The following are all equivalent, assuming
/// that their safety preconditions are met:
/// ```rust
/// # #![feature(ptr_sub_ptr)]
/// # unsafe fn blah(ptr: *const i32, origin: *const i32, count: usize) -> bool {
/// ptr.sub_ptr(origin) == count
/// # &&
/// origin.add(count) == ptr
/// # &&
/// ptr.sub(count) == origin
/// # }
/// ```
///
/// # Safety
///
/// - The distance between the pointers must be non-negative (`self >= origin`)
///
/// - *All* the safety conditions of [`offset_from`](#method.offset_from)
/// apply to this method as well; see it for the full details.
///
/// Importantly, despite the return type of this method being able to represent
/// a larger offset, it's still *not permitted* to pass pointers which differ
/// by more than `isize::MAX` *bytes*. As such, the result of this method will
/// always be less than or equal to `isize::MAX as usize`.
///
/// # Panics
///
/// This function panics if `T` is a Zero-Sized Type ("ZST").
///
/// # Examples
///
/// ```
/// #![feature(ptr_sub_ptr)]
///
/// let a = [0; 5];
/// let ptr1: *const i32 = &a[1];
/// let ptr2: *const i32 = &a[3];
/// unsafe {
/// assert_eq!(ptr2.sub_ptr(ptr1), 2);
/// assert_eq!(ptr1.add(2), ptr2);
/// assert_eq!(ptr2.sub(2), ptr1);
/// assert_eq!(ptr2.sub_ptr(ptr2), 0);
/// }
///
/// // This would be incorrect, as the pointers are not correctly ordered:
/// // ptr1.sub_ptr(ptr2)
/// ```
#[unstable(feature = "ptr_sub_ptr", issue = "95892")]
#[rustc_const_unstable(feature = "const_ptr_sub_ptr", issue = "95892")]
#[inline]
#[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
pub const unsafe fn sub_ptr(self, origin: *const T) -> usize
where
T: Sized,
{
const fn runtime_ptr_ge(this: *const (), origin: *const ()) -> bool {
fn runtime(this: *const (), origin: *const ()) -> bool {
this >= origin
}
const fn comptime(_: *const (), _: *const ()) -> bool {
true
}
#[allow(unused_unsafe)]
intrinsics::const_eval_select((this, origin), comptime, runtime)
}
ub_checks::assert_unsafe_precondition!(
check_language_ub,
"ptr::sub_ptr requires `self >= origin`",
(
this: *const () = self as *const (),
origin: *const () = origin as *const (),
) => runtime_ptr_ge(this, origin)
);
let pointee_size = mem::size_of::<T>();
assert!(0 < pointee_size && pointee_size <= isize::MAX as usize);
// SAFETY: the caller must uphold the safety contract for `ptr_offset_from_unsigned`.
unsafe { intrinsics::ptr_offset_from_unsigned(self, origin) }
}
/// Returns whether two pointers are guaranteed to be equal.
///
/// At runtime this function behaves like `Some(self == other)`.
/// However, in some contexts (e.g., compile-time evaluation),
/// it is not always possible to determine equality of two pointers, so this function may
/// spuriously return `None` for pointers that later actually turn out to have its equality known.
/// But when it returns `Some`, the pointers' equality is guaranteed to be known.
///
/// The return value may change from `Some` to `None` and vice versa depending on the compiler
/// version and unsafe code must not
/// rely on the result of this function for soundness. It is suggested to only use this function
/// for performance optimizations where spurious `None` return values by this function do not
/// affect the outcome, but just the performance.
/// The consequences of using this method to make runtime and compile-time code behave
/// differently have not been explored. This method should not be used to introduce such
/// differences, and it should also not be stabilized before we have a better understanding
/// of this issue.
#[unstable(feature = "const_raw_ptr_comparison", issue = "53020")]
#[rustc_const_unstable(feature = "const_raw_ptr_comparison", issue = "53020")]
#[inline]
pub const fn guaranteed_eq(self, other: *const T) -> Option<bool>
where
T: Sized,
{
match intrinsics::ptr_guaranteed_cmp(self, other) {
2 => None,
other => Some(other == 1),
}
}
/// Returns whether two pointers are guaranteed to be inequal.
///
/// At runtime this function behaves like `Some(self != other)`.
/// However, in some contexts (e.g., compile-time evaluation),
/// it is not always possible to determine inequality of two pointers, so this function may
/// spuriously return `None` for pointers that later actually turn out to have its inequality known.
/// But when it returns `Some`, the pointers' inequality is guaranteed to be known.
///
/// The return value may change from `Some` to `None` and vice versa depending on the compiler
/// version and unsafe code must not
/// rely on the result of this function for soundness. It is suggested to only use this function
/// for performance optimizations where spurious `None` return values by this function do not
/// affect the outcome, but just the performance.
/// The consequences of using this method to make runtime and compile-time code behave
/// differently have not been explored. This method should not be used to introduce such
/// differences, and it should also not be stabilized before we have a better understanding
/// of this issue.
#[unstable(feature = "const_raw_ptr_comparison", issue = "53020")]
#[rustc_const_unstable(feature = "const_raw_ptr_comparison", issue = "53020")]
#[inline]
pub const fn guaranteed_ne(self, other: *const T) -> Option<bool>
where
T: Sized,
{
match self.guaranteed_eq(other) {
None => None,
Some(eq) => Some(!eq),
}
}
/// Adds an offset to a pointer (convenience for `.offset(count as isize)`).
///
/// `count` is in units of T; e.g., a `count` of 3 represents a pointer
/// offset of `3 * size_of::<T>()` bytes.
///
/// # Safety
///
/// If any of the following conditions are violated, the result is Undefined Behavior:
///
/// * The computed offset, `count * size_of::<T>()` bytes, must not overflow `isize`.
///
/// * If the computed offset is non-zero, then `self` must be derived from a pointer to some
/// [allocated object], and the entire memory range between `self` and the result must be in
/// bounds of that allocated object. In particular, this range must not "wrap around" the edge
/// of the address space.
///
/// Allocated objects can never be larger than `isize::MAX` bytes, so if the computed offset
/// stays in bounds of the allocated object, it is guaranteed to satisfy the first requirement.
/// This implies, for instance, that `vec.as_ptr().add(vec.len())` (for `vec: Vec<T>`) is always
/// safe.
///
/// Consider using [`wrapping_add`] instead if these constraints are
/// difficult to satisfy. The only advantage of this method is that it
/// enables more aggressive compiler optimizations.
///
/// [`wrapping_add`]: #method.wrapping_add
/// [allocated object]: crate::ptr#allocated-object
///
/// # Examples
///
/// ```
/// let s: &str = "123";
/// let ptr: *const u8 = s.as_ptr();
///
/// unsafe {
/// assert_eq!(*ptr.add(1), b'2');
/// assert_eq!(*ptr.add(2), b'3');
/// }
/// ```
#[stable(feature = "pointer_methods", since = "1.26.0")]
#[must_use = "returns a new pointer rather than modifying its argument"]
#[rustc_const_stable(feature = "const_ptr_offset", since = "1.61.0")]
#[inline(always)]
#[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
pub const unsafe fn add(self, count: usize) -> Self
where
T: Sized,
{
// SAFETY: the caller must uphold the safety contract for `offset`.
unsafe { intrinsics::offset(self, count) }
}
/// Calculates the offset from a pointer in bytes (convenience for `.byte_offset(count as isize)`).
///
/// `count` is in units of bytes.
///
/// This is purely a convenience for casting to a `u8` pointer and
/// using [add][pointer::add] on it. See that method for documentation
/// and safety requirements.
///
/// For non-`Sized` pointees this operation changes only the data pointer,
/// leaving the metadata untouched.
#[must_use]
#[inline(always)]
#[stable(feature = "pointer_byte_offsets", since = "1.75.0")]
#[rustc_const_stable(feature = "const_pointer_byte_offsets", since = "1.75.0")]
#[rustc_allow_const_fn_unstable(set_ptr_value)]
#[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
pub const unsafe fn byte_add(self, count: usize) -> Self {
// SAFETY: the caller must uphold the safety contract for `add`.
unsafe { self.cast::<u8>().add(count).with_metadata_of(self) }
}
/// Subtracts an offset from a pointer (convenience for
/// `.offset((count as isize).wrapping_neg())`).
///
/// `count` is in units of T; e.g., a `count` of 3 represents a pointer
/// offset of `3 * size_of::<T>()` bytes.
///
/// # Safety
///
/// If any of the following conditions are violated, the result is Undefined Behavior:
///
/// * The computed offset, `count * size_of::<T>()` bytes, must not overflow `isize`.
///
/// * If the computed offset is non-zero, then `self` must be derived from a pointer to some
/// [allocated object], and the entire memory range between `self` and the result must be in
/// bounds of that allocated object. In particular, this range must not "wrap around" the edge
/// of the address space.
///
/// Allocated objects can never be larger than `isize::MAX` bytes, so if the computed offset
/// stays in bounds of the allocated object, it is guaranteed to satisfy the first requirement.
/// This implies, for instance, that `vec.as_ptr().add(vec.len())` (for `vec: Vec<T>`) is always
/// safe.
///
/// Consider using [`wrapping_sub`] instead if these constraints are
/// difficult to satisfy. The only advantage of this method is that it
/// enables more aggressive compiler optimizations.
///
/// [`wrapping_sub`]: #method.wrapping_sub
/// [allocated object]: crate::ptr#allocated-object
///
/// # Examples
///
/// ```
/// let s: &str = "123";
///
/// unsafe {
/// let end: *const u8 = s.as_ptr().add(3);
/// assert_eq!(*end.sub(1), b'3');
/// assert_eq!(*end.sub(2), b'2');
/// }
/// ```
#[stable(feature = "pointer_methods", since = "1.26.0")]
#[must_use = "returns a new pointer rather than modifying its argument"]
#[rustc_const_stable(feature = "const_ptr_offset", since = "1.61.0")]
#[rustc_allow_const_fn_unstable(unchecked_neg)]
#[inline(always)]
#[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
pub const unsafe fn sub(self, count: usize) -> Self
where
T: Sized,
{
if T::IS_ZST {
// Pointer arithmetic does nothing when the pointee is a ZST.
self
} else {
// SAFETY: the caller must uphold the safety contract for `offset`.
// Because the pointee is *not* a ZST, that means that `count` is
// at most `isize::MAX`, and thus the negation cannot overflow.
unsafe { self.offset((count as isize).unchecked_neg()) }
}
}
/// Calculates the offset from a pointer in bytes (convenience for
/// `.byte_offset((count as isize).wrapping_neg())`).
///
/// `count` is in units of bytes.
///
/// This is purely a convenience for casting to a `u8` pointer and
/// using [sub][pointer::sub] on it. See that method for documentation
/// and safety requirements.
///
/// For non-`Sized` pointees this operation changes only the data pointer,
/// leaving the metadata untouched.
#[must_use]
#[inline(always)]
#[stable(feature = "pointer_byte_offsets", since = "1.75.0")]
#[rustc_const_stable(feature = "const_pointer_byte_offsets", since = "1.75.0")]
#[rustc_allow_const_fn_unstable(set_ptr_value)]
#[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
pub const unsafe fn byte_sub(self, count: usize) -> Self {
// SAFETY: the caller must uphold the safety contract for `sub`.
unsafe { self.cast::<u8>().sub(count).with_metadata_of(self) }
}
/// Calculates the offset from a pointer using wrapping arithmetic.
/// (convenience for `.wrapping_offset(count as isize)`)
///
/// `count` is in units of T; e.g., a `count` of 3 represents a pointer
/// offset of `3 * size_of::<T>()` bytes.
///
/// # Safety
///
/// This operation itself is always safe, but using the resulting pointer is not.
///
/// The resulting pointer "remembers" the [allocated object] that `self` points to; it must not
/// be used to read or write other allocated objects.
///
/// In other words, `let z = x.wrapping_add((y as usize) - (x as usize))` does *not* make `z`
/// the same as `y` even if we assume `T` has size `1` and there is no overflow: `z` is still
/// attached to the object `x` is attached to, and dereferencing it is Undefined Behavior unless
/// `x` and `y` point into the same allocated object.
///
/// Compared to [`add`], this method basically delays the requirement of staying within the
/// same allocated object: [`add`] is immediate Undefined Behavior when crossing object
/// boundaries; `wrapping_add` produces a pointer but still leads to Undefined Behavior if a
/// pointer is dereferenced when it is out-of-bounds of the object it is attached to. [`add`]
/// can be optimized better and is thus preferable in performance-sensitive code.
///
/// The delayed check only considers the value of the pointer that was dereferenced, not the
/// intermediate values used during the computation of the final result. For example,
/// `x.wrapping_add(o).wrapping_sub(o)` is always the same as `x`. In other words, leaving the
/// allocated object and then re-entering it later is permitted.
///
/// [`add`]: #method.add
/// [allocated object]: crate::ptr#allocated-object
///
/// # Examples
///
/// ```