-
Notifications
You must be signed in to change notification settings - Fork 12.7k
/
place.rs
1150 lines (1045 loc) · 46.6 KB
/
place.rs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
//! Computations on places -- field projections, going from mir::Place, and writing
//! into a place.
//! All high-level functions to write to memory work on places as destinations.
use std::convert::TryFrom;
use std::hash::Hash;
use rustc::mir;
use rustc::mir::interpret::truncate;
use rustc::ty::{self, Ty};
use rustc::ty::layout::{
self, Size, Align, LayoutOf, TyLayout, HasDataLayout, VariantIdx, PrimitiveExt
};
use rustc::ty::TypeFoldable;
use rustc_macros::HashStable;
use super::{
GlobalId, AllocId, Allocation, Scalar, InterpResult, Pointer, PointerArithmetic,
InterpCx, Machine, AllocMap, AllocationExtra,
RawConst, Immediate, ImmTy, ScalarMaybeUndef, Operand, OpTy, MemoryKind, LocalValue,
};
#[derive(Copy, Clone, Debug, Hash, PartialEq, Eq, HashStable)]
pub struct MemPlace<Tag=(), Id=AllocId> {
/// A place may have an integral pointer for ZSTs, and since it might
/// be turned back into a reference before ever being dereferenced.
/// However, it may never be undef.
pub ptr: Scalar<Tag, Id>,
pub align: Align,
/// Metadata for unsized places. Interpretation is up to the type.
/// Must not be present for sized types, but can be missing for unsized types
/// (e.g., `extern type`).
pub meta: Option<Scalar<Tag, Id>>,
}
#[derive(Copy, Clone, Debug, Hash, PartialEq, Eq, HashStable)]
pub enum Place<Tag=(), Id=AllocId> {
/// A place referring to a value allocated in the `Memory` system.
Ptr(MemPlace<Tag, Id>),
/// To support alloc-free locals, we are able to write directly to a local.
/// (Without that optimization, we'd just always be a `MemPlace`.)
Local {
frame: usize,
local: mir::Local,
},
}
#[derive(Copy, Clone, Debug)]
pub struct PlaceTy<'tcx, Tag=()> {
place: Place<Tag>, // Keep this private; it helps enforce invariants.
pub layout: TyLayout<'tcx>,
}
impl<'tcx, Tag> ::std::ops::Deref for PlaceTy<'tcx, Tag> {
type Target = Place<Tag>;
#[inline(always)]
fn deref(&self) -> &Place<Tag> {
&self.place
}
}
/// A MemPlace with its layout. Constructing it is only possible in this module.
#[derive(Copy, Clone, Debug, Hash, Eq, PartialEq)]
pub struct MPlaceTy<'tcx, Tag=()> {
mplace: MemPlace<Tag>,
pub layout: TyLayout<'tcx>,
}
impl<'tcx, Tag> ::std::ops::Deref for MPlaceTy<'tcx, Tag> {
type Target = MemPlace<Tag>;
#[inline(always)]
fn deref(&self) -> &MemPlace<Tag> {
&self.mplace
}
}
impl<'tcx, Tag> From<MPlaceTy<'tcx, Tag>> for PlaceTy<'tcx, Tag> {
#[inline(always)]
fn from(mplace: MPlaceTy<'tcx, Tag>) -> Self {
PlaceTy {
place: Place::Ptr(mplace.mplace),
layout: mplace.layout
}
}
}
impl<Tag> MemPlace<Tag> {
/// Replace ptr tag, maintain vtable tag (if any)
#[inline]
pub fn replace_tag(self, new_tag: Tag) -> Self {
MemPlace {
ptr: self.ptr.erase_tag().with_tag(new_tag),
align: self.align,
meta: self.meta,
}
}
#[inline]
pub fn erase_tag(self) -> MemPlace {
MemPlace {
ptr: self.ptr.erase_tag(),
align: self.align,
meta: self.meta.map(Scalar::erase_tag),
}
}
#[inline(always)]
pub fn from_scalar_ptr(ptr: Scalar<Tag>, align: Align) -> Self {
MemPlace {
ptr,
align,
meta: None,
}
}
/// Produces a Place that will error if attempted to be read from or written to
#[inline(always)]
pub fn null(cx: &impl HasDataLayout) -> Self {
Self::from_scalar_ptr(Scalar::ptr_null(cx), Align::from_bytes(1).unwrap())
}
#[inline(always)]
pub fn from_ptr(ptr: Pointer<Tag>, align: Align) -> Self {
Self::from_scalar_ptr(ptr.into(), align)
}
/// Turn a mplace into a (thin or fat) pointer, as a reference, pointing to the same space.
/// This is the inverse of `ref_to_mplace`.
#[inline(always)]
pub fn to_ref(self) -> Immediate<Tag> {
match self.meta {
None => Immediate::Scalar(self.ptr.into()),
Some(meta) => Immediate::ScalarPair(self.ptr.into(), meta.into()),
}
}
pub fn offset(
self,
offset: Size,
meta: Option<Scalar<Tag>>,
cx: &impl HasDataLayout,
) -> InterpResult<'tcx, Self> {
Ok(MemPlace {
ptr: self.ptr.ptr_offset(offset, cx)?,
align: self.align.restrict_for_offset(offset),
meta,
})
}
}
impl<'tcx, Tag> MPlaceTy<'tcx, Tag> {
/// Produces a MemPlace that works for ZST but nothing else
#[inline]
pub fn dangling(layout: TyLayout<'tcx>, cx: &impl HasDataLayout) -> Self {
MPlaceTy {
mplace: MemPlace::from_scalar_ptr(
Scalar::from_uint(layout.align.abi.bytes(), cx.pointer_size()),
layout.align.abi
),
layout
}
}
/// Replace ptr tag, maintain vtable tag (if any)
#[inline]
pub fn replace_tag(self, new_tag: Tag) -> Self {
MPlaceTy {
mplace: self.mplace.replace_tag(new_tag),
layout: self.layout,
}
}
#[inline]
pub fn offset(
self,
offset: Size,
meta: Option<Scalar<Tag>>,
layout: TyLayout<'tcx>,
cx: &impl HasDataLayout,
) -> InterpResult<'tcx, Self> {
Ok(MPlaceTy {
mplace: self.mplace.offset(offset, meta, cx)?,
layout,
})
}
#[inline]
fn from_aligned_ptr(ptr: Pointer<Tag>, layout: TyLayout<'tcx>) -> Self {
MPlaceTy { mplace: MemPlace::from_ptr(ptr, layout.align.abi), layout }
}
#[inline]
pub(super) fn len(self, cx: &impl HasDataLayout) -> InterpResult<'tcx, u64> {
if self.layout.is_unsized() {
// We need to consult `meta` metadata
match self.layout.ty.kind {
ty::Slice(..) | ty::Str =>
return self.mplace.meta.unwrap().to_machine_usize(cx),
_ => bug!("len not supported on unsized type {:?}", self.layout.ty),
}
} else {
// Go through the layout. There are lots of types that support a length,
// e.g., SIMD types.
match self.layout.fields {
layout::FieldPlacement::Array { count, .. } => Ok(count),
_ => bug!("len not supported on sized type {:?}", self.layout.ty),
}
}
}
#[inline]
pub(super) fn vtable(self) -> Scalar<Tag> {
match self.layout.ty.kind {
ty::Dynamic(..) => self.mplace.meta.unwrap(),
_ => bug!("vtable not supported on type {:?}", self.layout.ty),
}
}
}
// These are defined here because they produce a place.
impl<'tcx, Tag: ::std::fmt::Debug + Copy> OpTy<'tcx, Tag> {
#[inline(always)]
pub fn try_as_mplace(self) -> Result<MPlaceTy<'tcx, Tag>, ImmTy<'tcx, Tag>> {
match *self {
Operand::Indirect(mplace) => Ok(MPlaceTy { mplace, layout: self.layout }),
Operand::Immediate(imm) => Err(ImmTy { imm, layout: self.layout }),
}
}
#[inline(always)]
pub fn assert_mem_place(self) -> MPlaceTy<'tcx, Tag> {
self.try_as_mplace().unwrap()
}
}
impl<Tag: ::std::fmt::Debug> Place<Tag> {
/// Produces a Place that will error if attempted to be read from or written to
#[inline(always)]
pub fn null(cx: &impl HasDataLayout) -> Self {
Place::Ptr(MemPlace::null(cx))
}
#[inline(always)]
pub fn from_scalar_ptr(ptr: Scalar<Tag>, align: Align) -> Self {
Place::Ptr(MemPlace::from_scalar_ptr(ptr, align))
}
#[inline(always)]
pub fn from_ptr(ptr: Pointer<Tag>, align: Align) -> Self {
Place::Ptr(MemPlace::from_ptr(ptr, align))
}
#[inline]
pub fn assert_mem_place(self) -> MemPlace<Tag> {
match self {
Place::Ptr(mplace) => mplace,
_ => bug!("assert_mem_place: expected Place::Ptr, got {:?}", self),
}
}
}
impl<'tcx, Tag: ::std::fmt::Debug> PlaceTy<'tcx, Tag> {
#[inline]
pub fn assert_mem_place(self) -> MPlaceTy<'tcx, Tag> {
MPlaceTy { mplace: self.place.assert_mem_place(), layout: self.layout }
}
}
// separating the pointer tag for `impl Trait`, see https://github.com/rust-lang/rust/issues/54385
impl<'mir, 'tcx, Tag, M> InterpCx<'mir, 'tcx, M>
where
// FIXME: Working around https://github.com/rust-lang/rust/issues/54385
Tag: ::std::fmt::Debug + Copy + Eq + Hash + 'static,
M: Machine<'mir, 'tcx, PointerTag = Tag>,
// FIXME: Working around https://github.com/rust-lang/rust/issues/24159
M::MemoryMap: AllocMap<AllocId, (MemoryKind<M::MemoryKinds>, Allocation<Tag, M::AllocExtra>)>,
M::AllocExtra: AllocationExtra<Tag>,
{
/// Take a value, which represents a (thin or fat) reference, and make it a place.
/// Alignment is just based on the type. This is the inverse of `MemPlace::to_ref()`.
///
/// Only call this if you are sure the place is "valid" (aligned and inbounds), or do not
/// want to ever use the place for memory access!
/// Generally prefer `deref_operand`.
pub fn ref_to_mplace(
&self,
val: ImmTy<'tcx, M::PointerTag>,
) -> InterpResult<'tcx, MPlaceTy<'tcx, M::PointerTag>> {
let pointee_type = val.layout.ty.builtin_deref(true)
.expect("`ref_to_mplace` called on non-ptr type")
.ty;
let layout = self.layout_of(pointee_type)?;
let (ptr, meta) = match *val {
Immediate::Scalar(ptr) => (ptr.not_undef()?, None),
Immediate::ScalarPair(ptr, meta) => (ptr.not_undef()?, Some(meta.not_undef()?)),
};
let mplace = MemPlace {
ptr,
// We could use the run-time alignment here. For now, we do not, because
// the point of tracking the alignment here is to make sure that the *static*
// alignment information emitted with the loads is correct. The run-time
// alignment can only be more restrictive.
align: layout.align.abi,
meta,
};
Ok(MPlaceTy { mplace, layout })
}
/// Take an operand, representing a pointer, and dereference it to a place -- that
/// will always be a MemPlace. Lives in `place.rs` because it creates a place.
pub fn deref_operand(
&self,
src: OpTy<'tcx, M::PointerTag>,
) -> InterpResult<'tcx, MPlaceTy<'tcx, M::PointerTag>> {
let val = self.read_immediate(src)?;
trace!("deref to {} on {:?}", val.layout.ty, *val);
let place = self.ref_to_mplace(val)?;
self.mplace_access_checked(place)
}
/// Check if the given place is good for memory access with the given
/// size, falling back to the layout's size if `None` (in the latter case,
/// this must be a statically sized type).
///
/// On success, returns `None` for zero-sized accesses (where nothing else is
/// left to do) and a `Pointer` to use for the actual access otherwise.
#[inline]
pub fn check_mplace_access(
&self,
place: MPlaceTy<'tcx, M::PointerTag>,
size: Option<Size>,
) -> InterpResult<'tcx, Option<Pointer<M::PointerTag>>> {
let size = size.unwrap_or_else(|| {
assert!(!place.layout.is_unsized());
assert!(place.meta.is_none());
place.layout.size
});
self.memory.check_ptr_access(place.ptr, size, place.align)
}
/// Return the "access-checked" version of this `MPlace`, where for non-ZST
/// this is definitely a `Pointer`.
pub fn mplace_access_checked(
&self,
mut place: MPlaceTy<'tcx, M::PointerTag>,
) -> InterpResult<'tcx, MPlaceTy<'tcx, M::PointerTag>> {
let (size, align) = self.size_and_align_of_mplace(place)?
.unwrap_or((place.layout.size, place.layout.align.abi));
assert!(place.mplace.align <= align, "dynamic alignment less strict than static one?");
place.mplace.align = align; // maximally strict checking
// When dereferencing a pointer, it must be non-NULL, aligned, and live.
if let Some(ptr) = self.check_mplace_access(place, Some(size))? {
place.mplace.ptr = ptr.into();
}
Ok(place)
}
/// Force `place.ptr` to a `Pointer`.
/// Can be helpful to avoid lots of `force_ptr` calls later, if this place is used a lot.
pub fn force_mplace_ptr(
&self,
mut place: MPlaceTy<'tcx, M::PointerTag>,
) -> InterpResult<'tcx, MPlaceTy<'tcx, M::PointerTag>> {
place.mplace.ptr = self.force_ptr(place.mplace.ptr)?.into();
Ok(place)
}
/// Offset a pointer to project to a field. Unlike `place_field`, this is always
/// possible without allocating, so it can take `&self`. Also return the field's layout.
/// This supports both struct and array fields.
#[inline(always)]
pub fn mplace_field(
&self,
base: MPlaceTy<'tcx, M::PointerTag>,
field: u64,
) -> InterpResult<'tcx, MPlaceTy<'tcx, M::PointerTag>> {
// Not using the layout method because we want to compute on u64
let offset = match base.layout.fields {
layout::FieldPlacement::Arbitrary { ref offsets, .. } =>
offsets[usize::try_from(field).unwrap()],
layout::FieldPlacement::Array { stride, .. } => {
let len = base.len(self)?;
if field >= len {
// This can be violated because the index (field) can be a runtime value
// provided by the user.
debug!("tried to access element {} of array/slice with length {}", field, len);
throw_panic!(BoundsCheck { len, index: field });
}
stride * field
}
layout::FieldPlacement::Union(count) => {
assert!(field < count as u64,
"Tried to access field {} of union {:#?} with {} fields",
field, base.layout, count);
// Offset is always 0
Size::from_bytes(0)
}
};
// the only way conversion can fail if is this is an array (otherwise we already panicked
// above). In that case, all fields are equal.
let field_layout = base.layout.field(self, usize::try_from(field).unwrap_or(0))?;
// Offset may need adjustment for unsized fields.
let (meta, offset) = if field_layout.is_unsized() {
// Re-use parent metadata to determine dynamic field layout.
// With custom DSTS, this *will* execute user-defined code, but the same
// happens at run-time so that's okay.
let align = match self.size_and_align_of(base.meta, field_layout)? {
Some((_, align)) => align,
None if offset == Size::ZERO =>
// An extern type at offset 0, we fall back to its static alignment.
// FIXME: Once we have made decisions for how to handle size and alignment
// of `extern type`, this should be adapted. It is just a temporary hack
// to get some code to work that probably ought to work.
field_layout.align.abi,
None =>
bug!("Cannot compute offset for extern type field at non-0 offset"),
};
(base.meta, offset.align_to(align))
} else {
// base.meta could be present; we might be accessing a sized field of an unsized
// struct.
(None, offset)
};
// We do not look at `base.layout.align` nor `field_layout.align`, unlike
// codegen -- mostly to see if we can get away with that
base.offset(offset, meta, field_layout, self)
}
// Iterates over all fields of an array. Much more efficient than doing the
// same by repeatedly calling `mplace_array`.
pub fn mplace_array_fields(
&self,
base: MPlaceTy<'tcx, Tag>,
) -> InterpResult<'tcx, impl Iterator<Item = InterpResult<'tcx, MPlaceTy<'tcx, Tag>>> + 'tcx>
{
let len = base.len(self)?; // also asserts that we have a type where this makes sense
let stride = match base.layout.fields {
layout::FieldPlacement::Array { stride, .. } => stride,
_ => bug!("mplace_array_fields: expected an array layout"),
};
let layout = base.layout.field(self, 0)?;
let dl = &self.tcx.data_layout;
Ok((0..len).map(move |i| base.offset(i * stride, None, layout, dl)))
}
pub fn mplace_subslice(
&self,
base: MPlaceTy<'tcx, M::PointerTag>,
from: u64,
to: u64,
) -> InterpResult<'tcx, MPlaceTy<'tcx, M::PointerTag>> {
let len = base.len(self)?; // also asserts that we have a type where this makes sense
assert!(from <= len - to);
// Not using layout method because that works with usize, and does not work with slices
// (that have count 0 in their layout).
let from_offset = match base.layout.fields {
layout::FieldPlacement::Array { stride, .. } =>
stride * from,
_ => bug!("Unexpected layout of index access: {:#?}", base.layout),
};
// Compute meta and new layout
let inner_len = len - to - from;
let (meta, ty) = match base.layout.ty.kind {
// It is not nice to match on the type, but that seems to be the only way to
// implement this.
ty::Array(inner, _) =>
(None, self.tcx.mk_array(inner, inner_len)),
ty::Slice(..) => {
let len = Scalar::from_uint(inner_len, self.pointer_size());
(Some(len), base.layout.ty)
}
_ =>
bug!("cannot subslice non-array type: `{:?}`", base.layout.ty),
};
let layout = self.layout_of(ty)?;
base.offset(from_offset, meta, layout, self)
}
pub fn mplace_downcast(
&self,
base: MPlaceTy<'tcx, M::PointerTag>,
variant: VariantIdx,
) -> InterpResult<'tcx, MPlaceTy<'tcx, M::PointerTag>> {
// Downcasts only change the layout
assert!(base.meta.is_none());
Ok(MPlaceTy { layout: base.layout.for_variant(self, variant), ..base })
}
/// Project into an mplace
pub fn mplace_projection(
&self,
base: MPlaceTy<'tcx, M::PointerTag>,
proj_elem: &mir::PlaceElem<'tcx>,
) -> InterpResult<'tcx, MPlaceTy<'tcx, M::PointerTag>> {
use rustc::mir::ProjectionElem::*;
Ok(match *proj_elem {
Field(field, _) => self.mplace_field(base, field.index() as u64)?,
Downcast(_, variant) => self.mplace_downcast(base, variant)?,
Deref => self.deref_operand(base.into())?,
Index(local) => {
let layout = self.layout_of(self.tcx.types.usize)?;
let n = self.access_local(self.frame(), local, Some(layout))?;
let n = self.read_scalar(n)?;
let n = self.force_bits(n.not_undef()?, self.tcx.data_layout.pointer_size)?;
self.mplace_field(base, u64::try_from(n).unwrap())?
}
ConstantIndex {
offset,
min_length,
from_end,
} => {
let n = base.len(self)?;
assert!(n >= min_length as u64);
let index = if from_end {
n - u64::from(offset)
} else {
u64::from(offset)
};
self.mplace_field(base, index)?
}
Subslice { from, to } =>
self.mplace_subslice(base, u64::from(from), u64::from(to))?,
})
}
/// Gets the place of a field inside the place, and also the field's type.
/// Just a convenience function, but used quite a bit.
/// This is the only projection that might have a side-effect: We cannot project
/// into the field of a local `ScalarPair`, we have to first allocate it.
pub fn place_field(
&mut self,
base: PlaceTy<'tcx, M::PointerTag>,
field: u64,
) -> InterpResult<'tcx, PlaceTy<'tcx, M::PointerTag>> {
// FIXME: We could try to be smarter and avoid allocation for fields that span the
// entire place.
let mplace = self.force_allocation(base)?;
Ok(self.mplace_field(mplace, field)?.into())
}
pub fn place_downcast(
&self,
base: PlaceTy<'tcx, M::PointerTag>,
variant: VariantIdx,
) -> InterpResult<'tcx, PlaceTy<'tcx, M::PointerTag>> {
// Downcast just changes the layout
Ok(match base.place {
Place::Ptr(mplace) =>
self.mplace_downcast(MPlaceTy { mplace, layout: base.layout }, variant)?.into(),
Place::Local { .. } => {
let layout = base.layout.for_variant(self, variant);
PlaceTy { layout, ..base }
}
})
}
/// Projects into a place.
pub fn place_projection(
&mut self,
base: PlaceTy<'tcx, M::PointerTag>,
proj_elem: &mir::ProjectionElem<mir::Local, Ty<'tcx>>,
) -> InterpResult<'tcx, PlaceTy<'tcx, M::PointerTag>> {
use rustc::mir::ProjectionElem::*;
Ok(match *proj_elem {
Field(field, _) => self.place_field(base, field.index() as u64)?,
Downcast(_, variant) => self.place_downcast(base, variant)?,
Deref => self.deref_operand(self.place_to_op(base)?)?.into(),
// For the other variants, we have to force an allocation.
// This matches `operand_projection`.
Subslice { .. } | ConstantIndex { .. } | Index(_) => {
let mplace = self.force_allocation(base)?;
self.mplace_projection(mplace, proj_elem)?.into()
}
})
}
/// Evaluate statics and promoteds to an `MPlace`. Used to share some code between
/// `eval_place` and `eval_place_to_op`.
pub(super) fn eval_static_to_mplace(
&self,
place_static: &mir::Static<'tcx>
) -> InterpResult<'tcx, MPlaceTy<'tcx, M::PointerTag>> {
use rustc::mir::StaticKind;
Ok(match place_static.kind {
StaticKind::Promoted(promoted, promoted_substs) => {
let substs = self.subst_from_frame_and_normalize_erasing_regions(promoted_substs);
let instance = ty::Instance::new(place_static.def_id, substs);
// Even after getting `substs` from the frame, this instance may still be
// polymorphic because `ConstProp` will try to promote polymorphic MIR.
if instance.needs_subst() {
throw_inval!(TooGeneric);
}
self.const_eval_raw(GlobalId {
instance,
promoted: Some(promoted),
})?
}
StaticKind::Static => {
let ty = place_static.ty;
assert!(!ty.needs_subst());
let layout = self.layout_of(ty)?;
let instance = ty::Instance::mono(*self.tcx, place_static.def_id);
let cid = GlobalId {
instance,
promoted: None
};
// Just create a lazy reference, so we can support recursive statics.
// tcx takes care of assigning every static one and only one unique AllocId.
// When the data here is ever actually used, memory will notice,
// and it knows how to deal with alloc_id that are present in the
// global table but not in its local memory: It calls back into tcx through
// a query, triggering the CTFE machinery to actually turn this lazy reference
// into a bunch of bytes. IOW, statics are evaluated with CTFE even when
// this InterpCx uses another Machine (e.g., in miri). This is what we
// want! This way, computing statics works consistently between codegen
// and miri: They use the same query to eventually obtain a `ty::Const`
// and use that for further computation.
//
// Notice that statics have *two* AllocIds: the lazy one, and the resolved
// one. Here we make sure that the interpreted program never sees the
// resolved ID. Also see the doc comment of `Memory::get_static_alloc`.
let alloc_id = self.tcx.alloc_map.lock().create_static_alloc(cid.instance.def_id());
let ptr = self.tag_static_base_pointer(Pointer::from(alloc_id));
MPlaceTy::from_aligned_ptr(ptr, layout)
}
})
}
/// Computes a place. You should only use this if you intend to write into this
/// place; for reading, a more efficient alternative is `eval_place_for_read`.
pub fn eval_place(
&mut self,
place: &mir::Place<'tcx>,
) -> InterpResult<'tcx, PlaceTy<'tcx, M::PointerTag>> {
use rustc::mir::PlaceBase;
let mut place_ty = match &place.base {
PlaceBase::Local(mir::RETURN_PLACE) => {
// `return_place` has the *caller* layout, but we want to use our
// `layout to verify our assumption. The caller will validate
// their layout on return.
PlaceTy {
place: match self.frame().return_place {
Some(p) => *p,
// Even if we don't have a return place, we sometimes need to
// create this place, but any attempt to read from / write to it
// (even a ZST read/write) needs to error, so let us make this
// a NULL place.
//
// FIXME: Ideally we'd make sure that the place projections also
// bail out.
None => Place::null(&*self),
},
layout: self.layout_of(
self.subst_from_frame_and_normalize_erasing_regions(
self.frame().body.return_ty()
)
)?,
}
},
PlaceBase::Local(local) => PlaceTy {
// This works even for dead/uninitialized locals; we check further when writing
place: Place::Local {
frame: self.cur_frame(),
local: *local,
},
layout: self.layout_of_local(self.frame(), *local, None)?,
},
PlaceBase::Static(place_static) => self.eval_static_to_mplace(&place_static)?.into(),
};
for elem in place.projection.iter() {
place_ty = self.place_projection(place_ty, elem)?
}
self.dump_place(place_ty.place);
Ok(place_ty)
}
/// Write a scalar to a place
pub fn write_scalar(
&mut self,
val: impl Into<ScalarMaybeUndef<M::PointerTag>>,
dest: PlaceTy<'tcx, M::PointerTag>,
) -> InterpResult<'tcx> {
self.write_immediate(Immediate::Scalar(val.into()), dest)
}
/// Write an immediate to a place
#[inline(always)]
pub fn write_immediate(
&mut self,
src: Immediate<M::PointerTag>,
dest: PlaceTy<'tcx, M::PointerTag>,
) -> InterpResult<'tcx> {
self.write_immediate_no_validate(src, dest)?;
if M::enforce_validity(self) {
// Data got changed, better make sure it matches the type!
self.validate_operand(self.place_to_op(dest)?, vec![], None)?;
}
Ok(())
}
/// Write an `Immediate` to memory.
#[inline(always)]
pub fn write_immediate_to_mplace(
&mut self,
src: Immediate<M::PointerTag>,
dest: MPlaceTy<'tcx, M::PointerTag>,
) -> InterpResult<'tcx> {
self.write_immediate_to_mplace_no_validate(src, dest)?;
if M::enforce_validity(self) {
// Data got changed, better make sure it matches the type!
self.validate_operand(dest.into(), vec![], None)?;
}
Ok(())
}
/// Write an immediate to a place.
/// If you use this you are responsible for validating that things got copied at the
/// right type.
fn write_immediate_no_validate(
&mut self,
src: Immediate<M::PointerTag>,
dest: PlaceTy<'tcx, M::PointerTag>,
) -> InterpResult<'tcx> {
if cfg!(debug_assertions) {
// This is a very common path, avoid some checks in release mode
assert!(!dest.layout.is_unsized(), "Cannot write unsized data");
match src {
Immediate::Scalar(ScalarMaybeUndef::Scalar(Scalar::Ptr(_))) =>
assert_eq!(self.pointer_size(), dest.layout.size,
"Size mismatch when writing pointer"),
Immediate::Scalar(ScalarMaybeUndef::Scalar(Scalar::Raw { size, .. })) =>
assert_eq!(Size::from_bytes(size.into()), dest.layout.size,
"Size mismatch when writing bits"),
Immediate::Scalar(ScalarMaybeUndef::Undef) => {}, // undef can have any size
Immediate::ScalarPair(_, _) => {
// FIXME: Can we check anything here?
}
}
}
trace!("write_immediate: {:?} <- {:?}: {}", *dest, src, dest.layout.ty);
// See if we can avoid an allocation. This is the counterpart to `try_read_immediate`,
// but not factored as a separate function.
let mplace = match dest.place {
Place::Local { frame, local } => {
match self.stack[frame].locals[local].access_mut()? {
Ok(local) => {
// Local can be updated in-place.
*local = LocalValue::Live(Operand::Immediate(src));
return Ok(());
}
Err(mplace) => {
// The local is in memory, go on below.
mplace
}
}
},
Place::Ptr(mplace) => mplace, // already referring to memory
};
let dest = MPlaceTy { mplace, layout: dest.layout };
// This is already in memory, write there.
self.write_immediate_to_mplace_no_validate(src, dest)
}
/// Write an immediate to memory.
/// If you use this you are responsible for validating that things got copied at the
/// right type.
fn write_immediate_to_mplace_no_validate(
&mut self,
value: Immediate<M::PointerTag>,
dest: MPlaceTy<'tcx, M::PointerTag>,
) -> InterpResult<'tcx> {
// Note that it is really important that the type here is the right one, and matches the
// type things are read at. In case `src_val` is a `ScalarPair`, we don't do any magic here
// to handle padding properly, which is only correct if we never look at this data with the
// wrong type.
// Invalid places are a thing: the return place of a diverging function
let ptr = match self.check_mplace_access(dest, None)?
{
Some(ptr) => ptr,
None => return Ok(()), // zero-sized access
};
let tcx = &*self.tcx;
// FIXME: We should check that there are dest.layout.size many bytes available in
// memory. The code below is not sufficient, with enough padding it might not
// cover all the bytes!
match value {
Immediate::Scalar(scalar) => {
match dest.layout.abi {
layout::Abi::Scalar(_) => {}, // fine
_ => bug!("write_immediate_to_mplace: invalid Scalar layout: {:#?}",
dest.layout)
}
self.memory.get_raw_mut(ptr.alloc_id)?.write_scalar(
tcx, ptr, scalar, dest.layout.size
)
}
Immediate::ScalarPair(a_val, b_val) => {
// We checked `ptr_align` above, so all fields will have the alignment they need.
// We would anyway check against `ptr_align.restrict_for_offset(b_offset)`,
// which `ptr.offset(b_offset)` cannot possibly fail to satisfy.
let (a, b) = match dest.layout.abi {
layout::Abi::ScalarPair(ref a, ref b) => (&a.value, &b.value),
_ => bug!("write_immediate_to_mplace: invalid ScalarPair layout: {:#?}",
dest.layout)
};
let (a_size, b_size) = (a.size(self), b.size(self));
let b_offset = a_size.align_to(b.align(self).abi);
let b_ptr = ptr.offset(b_offset, self)?;
// It is tempting to verify `b_offset` against `layout.fields.offset(1)`,
// but that does not work: We could be a newtype around a pair, then the
// fields do not match the `ScalarPair` components.
self.memory
.get_raw_mut(ptr.alloc_id)?
.write_scalar(tcx, ptr, a_val, a_size)?;
self.memory
.get_raw_mut(b_ptr.alloc_id)?
.write_scalar(tcx, b_ptr, b_val, b_size)
}
}
}
/// Copies the data from an operand to a place. This does not support transmuting!
/// Use `copy_op_transmute` if the layouts could disagree.
#[inline(always)]
pub fn copy_op(
&mut self,
src: OpTy<'tcx, M::PointerTag>,
dest: PlaceTy<'tcx, M::PointerTag>,
) -> InterpResult<'tcx> {
self.copy_op_no_validate(src, dest)?;
if M::enforce_validity(self) {
// Data got changed, better make sure it matches the type!
self.validate_operand(self.place_to_op(dest)?, vec![], None)?;
}
Ok(())
}
/// Copies the data from an operand to a place. This does not support transmuting!
/// Use `copy_op_transmute` if the layouts could disagree.
/// Also, if you use this you are responsible for validating that things get copied at the
/// right type.
fn copy_op_no_validate(
&mut self,
src: OpTy<'tcx, M::PointerTag>,
dest: PlaceTy<'tcx, M::PointerTag>,
) -> InterpResult<'tcx> {
// We do NOT compare the types for equality, because well-typed code can
// actually "transmute" `&mut T` to `&T` in an assignment without a cast.
assert!(src.layout.details == dest.layout.details,
"Layout mismatch when copying!\nsrc: {:#?}\ndest: {:#?}", src, dest);
// Let us see if the layout is simple so we take a shortcut, avoid force_allocation.
let src = match self.try_read_immediate(src)? {
Ok(src_val) => {
assert!(!src.layout.is_unsized(), "cannot have unsized immediates");
// Yay, we got a value that we can write directly.
// FIXME: Add a check to make sure that if `src` is indirect,
// it does not overlap with `dest`.
return self.write_immediate_no_validate(*src_val, dest);
}
Err(mplace) => mplace,
};
// Slow path, this does not fit into an immediate. Just memcpy.
trace!("copy_op: {:?} <- {:?}: {}", *dest, src, dest.layout.ty);
// This interprets `src.meta` with the `dest` local's layout, if an unsized local
// is being initialized!
let (dest, size) = self.force_allocation_maybe_sized(dest, src.meta)?;
let size = size.unwrap_or_else(|| {
assert!(!dest.layout.is_unsized(),
"Cannot copy into already initialized unsized place");
dest.layout.size
});
assert_eq!(src.meta, dest.meta, "Can only copy between equally-sized instances");
let src = self.check_mplace_access(src, Some(size))
.expect("places should be checked on creation");
let dest = self.check_mplace_access(dest, Some(size))
.expect("places should be checked on creation");
let (src_ptr, dest_ptr) = match (src, dest) {
(Some(src_ptr), Some(dest_ptr)) => (src_ptr, dest_ptr),
(None, None) => return Ok(()), // zero-sized copy
_ => bug!("The pointers should both be Some or both None"),
};
self.memory.copy(
src_ptr,
dest_ptr,
size,
/*nonoverlapping*/ true,
)
}
/// Copies the data from an operand to a place. The layouts may disagree, but they must
/// have the same size.
pub fn copy_op_transmute(
&mut self,
src: OpTy<'tcx, M::PointerTag>,
dest: PlaceTy<'tcx, M::PointerTag>,
) -> InterpResult<'tcx> {
if src.layout.details == dest.layout.details {
// Fast path: Just use normal `copy_op`
return self.copy_op(src, dest);
}
// We still require the sizes to match.
assert!(src.layout.size == dest.layout.size,
"Size mismatch when transmuting!\nsrc: {:#?}\ndest: {:#?}", src, dest);
// Unsized copies rely on interpreting `src.meta` with `dest.layout`, we want
// to avoid that here.
assert!(!src.layout.is_unsized() && !dest.layout.is_unsized(),
"Cannot transmute unsized data");
// The hard case is `ScalarPair`. `src` is already read from memory in this case,
// using `src.layout` to figure out which bytes to use for the 1st and 2nd field.
// We have to write them to `dest` at the offsets they were *read at*, which is
// not necessarily the same as the offsets in `dest.layout`!
// Hence we do the copy with the source layout on both sides. We also make sure to write
// into memory, because if `dest` is a local we would not even have a way to write
// at the `src` offsets; the fact that we came from a different layout would
// just be lost.
let dest = self.force_allocation(dest)?;
self.copy_op_no_validate(
src,
PlaceTy::from(MPlaceTy { mplace: *dest, layout: src.layout }),
)?;
if M::enforce_validity(self) {
// Data got changed, better make sure it matches the type!
self.validate_operand(dest.into(), vec![], None)?;
}
Ok(())
}
/// Ensures that a place is in memory, and returns where it is.
/// If the place currently refers to a local that doesn't yet have a matching allocation,
/// create such an allocation.
/// This is essentially `force_to_memplace`.
///
/// This supports unsized types and returns the computed size to avoid some
/// redundant computation when copying; use `force_allocation` for a simpler, sized-only
/// version.
pub fn force_allocation_maybe_sized(
&mut self,
place: PlaceTy<'tcx, M::PointerTag>,
meta: Option<Scalar<M::PointerTag>>,
) -> InterpResult<'tcx, (MPlaceTy<'tcx, M::PointerTag>, Option<Size>)> {
let (mplace, size) = match place.place {
Place::Local { frame, local } => {
match self.stack[frame].locals[local].access_mut()? {
Ok(local_val) => {
// We need to make an allocation.
// FIXME: Consider not doing anything for a ZST, and just returning
// a fake pointer? Are we even called for ZST?
// We cannot hold on to the reference `local_val` while allocating,
// but we can hold on to the value in there.
let old_val =
if let LocalValue::Live(Operand::Immediate(value)) = *local_val {
Some(value)
} else {
None
};
// We need the layout of the local. We can NOT use the layout we got,
// that might e.g., be an inner field of a struct with `Scalar` layout,
// that has different alignment than the outer field.
// We also need to support unsized types, and hence cannot use `allocate`.
let local_layout = self.layout_of_local(&self.stack[frame], local, None)?;