-
Notifications
You must be signed in to change notification settings - Fork 12.8k
/
memory.rs
904 lines (832 loc) · 35.1 KB
/
memory.rs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
//! The memory subsystem.
//!
//! Generally, we use `Pointer` to denote memory addresses. However, some operations
//! have a "size"-like parameter, and they take `Scalar` for the address because
//! if the size is 0, then the pointer can also be a (properly aligned, non-NULL)
//! integer. It is crucial that these operations call `check_align` *before*
//! short-circuiting the empty case!
use std::collections::VecDeque;
use std::ptr;
use std::borrow::Cow;
use rustc::ty::{self, Instance, ParamEnv, query::TyCtxtAt};
use rustc::ty::layout::{Align, TargetDataLayout, Size, HasDataLayout};
use rustc_data_structures::fx::{FxHashSet, FxHashMap};
use syntax::ast::Mutability;
use super::{
Pointer, AllocId, Allocation, GlobalId, AllocationExtra,
InterpResult, Scalar, InterpError, GlobalAlloc, PointerArithmetic,
Machine, AllocMap, MayLeak, ErrorHandled, CheckInAllocMsg,
};
#[derive(Debug, PartialEq, Eq, Copy, Clone, Hash)]
pub enum MemoryKind<T> {
/// Error if deallocated except during a stack pop
Stack,
/// Error if ever deallocated
Vtable,
/// Additional memory kinds a machine wishes to distinguish from the builtin ones
Machine(T),
}
impl<T: MayLeak> MayLeak for MemoryKind<T> {
#[inline]
fn may_leak(self) -> bool {
match self {
MemoryKind::Stack => false,
MemoryKind::Vtable => true,
MemoryKind::Machine(k) => k.may_leak()
}
}
}
/// Used by `get_size_and_align` to indicate whether the allocation needs to be live.
#[derive(Debug, Copy, Clone)]
pub enum AllocCheck {
/// Allocation must be live and not a function pointer.
Dereferencable,
/// Allocations needs to be live, but may be a function pointer.
Live,
/// Allocation may be dead.
MaybeDead,
}
// `Memory` has to depend on the `Machine` because some of its operations
// (e.g., `get`) call a `Machine` hook.
pub struct Memory<'mir, 'tcx, M: Machine<'mir, 'tcx>> {
/// Allocations local to this instance of the miri engine. The kind
/// helps ensure that the same mechanism is used for allocation and
/// deallocation. When an allocation is not found here, it is a
/// static and looked up in the `tcx` for read access. Some machines may
/// have to mutate this map even on a read-only access to a static (because
/// they do pointer provenance tracking and the allocations in `tcx` have
/// the wrong type), so we let the machine override this type.
/// Either way, if the machine allows writing to a static, doing so will
/// create a copy of the static allocation here.
// FIXME: this should not be public, but interning currently needs access to it
pub(super) alloc_map: M::MemoryMap,
/// To be able to compare pointers with NULL, and to check alignment for accesses
/// to ZSTs (where pointers may dangle), we keep track of the size even for allocations
/// that do not exist any more.
pub(super) dead_alloc_map: FxHashMap<AllocId, (Size, Align)>,
/// Extra data added by the machine.
pub extra: M::MemoryExtra,
/// Lets us implement `HasDataLayout`, which is awfully convenient.
pub(super) tcx: TyCtxtAt<'tcx>,
}
impl<'mir, 'tcx, M: Machine<'mir, 'tcx>> HasDataLayout for Memory<'mir, 'tcx, M> {
#[inline]
fn data_layout(&self) -> &TargetDataLayout {
&self.tcx.data_layout
}
}
// FIXME: Really we shouldn't clone memory, ever. Snapshot machinery should instead
// carefully copy only the reachable parts.
impl<'mir, 'tcx, M> Clone for Memory<'mir, 'tcx, M>
where
M: Machine<'mir, 'tcx, PointerTag = (), AllocExtra = (), MemoryExtra = ()>,
M::MemoryMap: AllocMap<AllocId, (MemoryKind<M::MemoryKinds>, Allocation)>,
{
fn clone(&self) -> Self {
Memory {
alloc_map: self.alloc_map.clone(),
dead_alloc_map: self.dead_alloc_map.clone(),
extra: (),
tcx: self.tcx,
}
}
}
impl<'mir, 'tcx, M: Machine<'mir, 'tcx>> Memory<'mir, 'tcx, M> {
pub fn new(tcx: TyCtxtAt<'tcx>) -> Self {
Memory {
alloc_map: M::MemoryMap::default(),
dead_alloc_map: FxHashMap::default(),
extra: M::MemoryExtra::default(),
tcx,
}
}
#[inline]
pub fn tag_static_base_pointer(&self, ptr: Pointer) -> Pointer<M::PointerTag> {
ptr.with_tag(M::tag_static_base_pointer(ptr.alloc_id, &self))
}
pub fn create_fn_alloc(&mut self, instance: Instance<'tcx>) -> Pointer<M::PointerTag> {
let id = self.tcx.alloc_map.lock().create_fn_alloc(instance);
self.tag_static_base_pointer(Pointer::from(id))
}
pub fn allocate(
&mut self,
size: Size,
align: Align,
kind: MemoryKind<M::MemoryKinds>,
) -> Pointer<M::PointerTag> {
let alloc = Allocation::undef(size, align);
self.allocate_with(alloc, kind)
}
pub fn allocate_static_bytes(
&mut self,
bytes: &[u8],
kind: MemoryKind<M::MemoryKinds>,
) -> Pointer<M::PointerTag> {
let alloc = Allocation::from_byte_aligned_bytes(bytes);
self.allocate_with(alloc, kind)
}
pub fn allocate_with(
&mut self,
alloc: Allocation,
kind: MemoryKind<M::MemoryKinds>,
) -> Pointer<M::PointerTag> {
let id = self.tcx.alloc_map.lock().reserve();
let (alloc, tag) = M::tag_allocation(id, Cow::Owned(alloc), Some(kind), &self);
self.alloc_map.insert(id, (kind, alloc.into_owned()));
Pointer::from(id).with_tag(tag)
}
pub fn reallocate(
&mut self,
ptr: Pointer<M::PointerTag>,
old_size: Size,
old_align: Align,
new_size: Size,
new_align: Align,
kind: MemoryKind<M::MemoryKinds>,
) -> InterpResult<'tcx, Pointer<M::PointerTag>> {
if ptr.offset.bytes() != 0 {
return err!(ReallocateNonBasePtr);
}
// For simplicities' sake, we implement reallocate as "alloc, copy, dealloc".
// This happens so rarely, the perf advantage is outweighed by the maintenance cost.
let new_ptr = self.allocate(new_size, new_align, kind);
self.copy(
ptr.into(),
old_align,
new_ptr.into(),
new_align,
old_size.min(new_size),
/*nonoverlapping*/ true,
)?;
self.deallocate(ptr, Some((old_size, old_align)), kind)?;
Ok(new_ptr)
}
/// Deallocate a local, or do nothing if that local has been made into a static
pub fn deallocate_local(&mut self, ptr: Pointer<M::PointerTag>) -> InterpResult<'tcx> {
// The allocation might be already removed by static interning.
// This can only really happen in the CTFE instance, not in miri.
if self.alloc_map.contains_key(&ptr.alloc_id) {
self.deallocate(ptr, None, MemoryKind::Stack)
} else {
Ok(())
}
}
pub fn deallocate(
&mut self,
ptr: Pointer<M::PointerTag>,
size_and_align: Option<(Size, Align)>,
kind: MemoryKind<M::MemoryKinds>,
) -> InterpResult<'tcx> {
trace!("deallocating: {}", ptr.alloc_id);
if ptr.offset.bytes() != 0 {
return err!(DeallocateNonBasePtr);
}
let (alloc_kind, mut alloc) = match self.alloc_map.remove(&ptr.alloc_id) {
Some(alloc) => alloc,
None => {
// Deallocating static memory -- always an error
return match self.tcx.alloc_map.lock().get(ptr.alloc_id) {
Some(GlobalAlloc::Function(..)) => err!(DeallocatedWrongMemoryKind(
"function".to_string(),
format!("{:?}", kind),
)),
Some(GlobalAlloc::Static(..)) |
Some(GlobalAlloc::Memory(..)) => err!(DeallocatedWrongMemoryKind(
"static".to_string(),
format!("{:?}", kind),
)),
None => err!(DoubleFree)
}
}
};
if alloc_kind != kind {
return err!(DeallocatedWrongMemoryKind(
format!("{:?}", alloc_kind),
format!("{:?}", kind),
));
}
if let Some((size, align)) = size_and_align {
if size.bytes() != alloc.bytes.len() as u64 || align != alloc.align {
let bytes = Size::from_bytes(alloc.bytes.len() as u64);
return err!(IncorrectAllocationInformation(size,
bytes,
align,
alloc.align));
}
}
// Let the machine take some extra action
let size = Size::from_bytes(alloc.bytes.len() as u64);
AllocationExtra::memory_deallocated(&mut alloc, ptr, size)?;
// Don't forget to remember size and align of this now-dead allocation
let old = self.dead_alloc_map.insert(
ptr.alloc_id,
(Size::from_bytes(alloc.bytes.len() as u64), alloc.align)
);
if old.is_some() {
bug!("Nothing can be deallocated twice");
}
Ok(())
}
/// Check if the given scalar is allowed to do a memory access of given `size`
/// and `align`. On success, returns `None` for zero-sized accesses (where
/// nothing else is left to do) and a `Pointer` to use for the actual access otherwise.
/// Crucially, if the input is a `Pointer`, we will test it for liveness
/// *even of* the size is 0.
///
/// Everyone accessing memory based on a `Scalar` should use this method to get the
/// `Pointer` they need. And even if you already have a `Pointer`, call this method
/// to make sure it is sufficiently aligned and not dangling. Not doing that may
/// cause ICEs.
pub fn check_ptr_access(
&self,
sptr: Scalar<M::PointerTag>,
size: Size,
align: Align,
) -> InterpResult<'tcx, Option<Pointer<M::PointerTag>>> {
fn check_offset_align(offset: u64, align: Align) -> InterpResult<'static> {
if offset % align.bytes() == 0 {
Ok(())
} else {
// The biggest power of two through which `offset` is divisible.
let offset_pow2 = 1 << offset.trailing_zeros();
err!(AlignmentCheckFailed {
has: Align::from_bytes(offset_pow2).unwrap(),
required: align,
})
}
}
// Normalize to a `Pointer` if we definitely need one.
let normalized = if size.bytes() == 0 {
// Can be an integer, just take what we got. We do NOT `force_bits` here;
// if this is already a `Pointer` we want to do the bounds checks!
sptr
} else {
// A "real" access, we must get a pointer.
Scalar::Ptr(self.force_ptr(sptr)?)
};
Ok(match normalized.to_bits_or_ptr(self.pointer_size(), self) {
Ok(bits) => {
let bits = bits as u64; // it's ptr-sized
assert!(size.bytes() == 0);
// Must be non-NULL and aligned.
if bits == 0 {
return err!(InvalidNullPointerUsage);
}
check_offset_align(bits, align)?;
None
}
Err(ptr) => {
let (allocation_size, alloc_align) =
self.get_size_and_align(ptr.alloc_id, AllocCheck::Dereferencable)?;
// Test bounds. This also ensures non-NULL.
// It is sufficient to check this for the end pointer. The addition
// checks for overflow.
let end_ptr = ptr.offset(size, self)?;
end_ptr.check_in_alloc(allocation_size, CheckInAllocMsg::MemoryAccessTest)?;
// Test align. Check this last; if both bounds and alignment are violated
// we want the error to be about the bounds.
if alloc_align.bytes() < align.bytes() {
// The allocation itself is not aligned enough.
// FIXME: Alignment check is too strict, depending on the base address that
// got picked we might be aligned even if this check fails.
// We instead have to fall back to converting to an integer and checking
// the "real" alignment.
return err!(AlignmentCheckFailed {
has: alloc_align,
required: align,
});
}
check_offset_align(ptr.offset.bytes(), align)?;
// We can still be zero-sized in this branch, in which case we have to
// return `None`.
if size.bytes() == 0 { None } else { Some(ptr) }
}
})
}
/// Test if the pointer might be NULL.
pub fn ptr_may_be_null(
&self,
ptr: Pointer<M::PointerTag>,
) -> bool {
let (size, _align) = self.get_size_and_align(ptr.alloc_id, AllocCheck::MaybeDead)
.expect("alloc info with MaybeDead cannot fail");
ptr.check_in_alloc(size, CheckInAllocMsg::NullPointerTest).is_err()
}
}
/// Allocation accessors
impl<'mir, 'tcx, M: Machine<'mir, 'tcx>> Memory<'mir, 'tcx, M> {
/// Helper function to obtain the global (tcx) allocation for a static.
/// This attempts to return a reference to an existing allocation if
/// one can be found in `tcx`. That, however, is only possible if `tcx` and
/// this machine use the same pointer tag, so it is indirected through
/// `M::tag_allocation`.
///
/// Notice that every static has two `AllocId` that will resolve to the same
/// thing here: one maps to `GlobalAlloc::Static`, this is the "lazy" ID,
/// and the other one is maps to `GlobalAlloc::Memory`, this is returned by
/// `const_eval_raw` and it is the "resolved" ID.
/// The resolved ID is never used by the interpreted progrma, it is hidden.
/// The `GlobalAlloc::Memory` branch here is still reachable though; when a static
/// contains a reference to memory that was created during its evaluation (i.e., not to
/// another static), those inner references only exist in "resolved" form.
fn get_static_alloc(
id: AllocId,
tcx: TyCtxtAt<'tcx>,
memory: &Memory<'mir, 'tcx, M>,
) -> InterpResult<'tcx, Cow<'tcx, Allocation<M::PointerTag, M::AllocExtra>>> {
let alloc = tcx.alloc_map.lock().get(id);
let alloc = match alloc {
Some(GlobalAlloc::Memory(mem)) =>
Cow::Borrowed(mem),
Some(GlobalAlloc::Function(..)) =>
return err!(DerefFunctionPointer),
None =>
return err!(DanglingPointerDeref),
Some(GlobalAlloc::Static(def_id)) => {
// We got a "lazy" static that has not been computed yet.
if tcx.is_foreign_item(def_id) {
trace!("static_alloc: foreign item {:?}", def_id);
M::find_foreign_static(def_id, tcx)?
} else {
trace!("static_alloc: Need to compute {:?}", def_id);
let instance = Instance::mono(tcx.tcx, def_id);
let gid = GlobalId {
instance,
promoted: None,
};
// use the raw query here to break validation cycles. Later uses of the static
// will call the full query anyway
let raw_const = tcx.const_eval_raw(ty::ParamEnv::reveal_all().and(gid))
.map_err(|err| {
// no need to report anything, the const_eval call takes care of that
// for statics
assert!(tcx.is_static(def_id));
match err {
ErrorHandled::Reported => InterpError::ReferencedConstant,
ErrorHandled::TooGeneric => InterpError::TooGeneric,
}
})?;
// Make sure we use the ID of the resolved memory, not the lazy one!
let id = raw_const.alloc_id;
let allocation = tcx.alloc_map.lock().unwrap_memory(id);
Cow::Borrowed(allocation)
}
}
};
// We got tcx memory. Let the machine figure out whether and how to
// turn that into memory with the right pointer tag.
Ok(M::tag_allocation(
id, // always use the ID we got as input, not the "hidden" one.
alloc,
M::STATIC_KIND.map(MemoryKind::Machine),
memory
).0)
}
pub fn get(
&self,
id: AllocId,
) -> InterpResult<'tcx, &Allocation<M::PointerTag, M::AllocExtra>> {
// The error type of the inner closure here is somewhat funny. We have two
// ways of "erroring": An actual error, or because we got a reference from
// `get_static_alloc` that we can actually use directly without inserting anything anywhere.
// So the error type is `InterpResult<'tcx, &Allocation<M::PointerTag>>`.
let a = self.alloc_map.get_or(id, || {
let alloc = Self::get_static_alloc(id, self.tcx, &self).map_err(Err)?;
match alloc {
Cow::Borrowed(alloc) => {
// We got a ref, cheaply return that as an "error" so that the
// map does not get mutated.
Err(Ok(alloc))
}
Cow::Owned(alloc) => {
// Need to put it into the map and return a ref to that
let kind = M::STATIC_KIND.expect(
"I got an owned allocation that I have to copy but the machine does \
not expect that to happen"
);
Ok((MemoryKind::Machine(kind), alloc))
}
}
});
// Now unpack that funny error type
match a {
Ok(a) => Ok(&a.1),
Err(a) => a
}
}
pub fn get_mut(
&mut self,
id: AllocId,
) -> InterpResult<'tcx, &mut Allocation<M::PointerTag, M::AllocExtra>> {
let tcx = self.tcx;
let alloc = Self::get_static_alloc(id, tcx, &self);
let a = self.alloc_map.get_mut_or(id, || {
// Need to make a copy, even if `get_static_alloc` is able
// to give us a cheap reference.
let alloc = alloc?;
if alloc.mutability == Mutability::Immutable {
return err!(ModifiedConstantMemory);
}
match M::STATIC_KIND {
Some(kind) => Ok((MemoryKind::Machine(kind), alloc.into_owned())),
None => err!(ModifiedStatic),
}
});
// Unpack the error type manually because type inference doesn't
// work otherwise (and we cannot help it because `impl Trait`)
match a {
Err(e) => Err(e),
Ok(a) => {
let a = &mut a.1;
if a.mutability == Mutability::Immutable {
return err!(ModifiedConstantMemory);
}
Ok(a)
}
}
}
/// Obtain the size and alignment of an allocation, even if that allocation has
/// been deallocated.
///
/// If `liveness` is `AllocCheck::MaybeDead`, this function always returns `Ok`.
pub fn get_size_and_align(
&self,
id: AllocId,
liveness: AllocCheck,
) -> InterpResult<'static, (Size, Align)> {
if let Ok(alloc) = self.get(id) {
return Ok((Size::from_bytes(alloc.bytes.len() as u64), alloc.align));
}
// can't do this in the match argument, we may get cycle errors since the lock would get
// dropped after the match.
let alloc = self.tcx.alloc_map.lock().get(id);
// Could also be a fn ptr or extern static
match alloc {
Some(GlobalAlloc::Function(..)) => {
if let AllocCheck::Dereferencable = liveness {
// The caller requested no function pointers.
err!(DerefFunctionPointer)
} else {
Ok((Size::ZERO, Align::from_bytes(1).unwrap()))
}
}
// `self.get` would also work, but can cause cycles if a static refers to itself
Some(GlobalAlloc::Static(did)) => {
// The only way `get` couldn't have worked here is if this is an extern static
assert!(self.tcx.is_foreign_item(did));
// Use size and align of the type
let ty = self.tcx.type_of(did);
let layout = self.tcx.layout_of(ParamEnv::empty().and(ty)).unwrap();
Ok((layout.size, layout.align.abi))
}
_ => {
if let Ok(alloc) = self.get(id) {
Ok((Size::from_bytes(alloc.bytes.len() as u64), alloc.align))
}
else if let AllocCheck::MaybeDead = liveness {
// Deallocated pointers are allowed, we should be able to find
// them in the map.
Ok(*self.dead_alloc_map.get(&id)
.expect("deallocated pointers should all be recorded in `dead_alloc_map`"))
} else {
err!(DanglingPointerDeref)
}
},
}
}
pub fn get_fn(&self, ptr: Pointer<M::PointerTag>) -> InterpResult<'tcx, Instance<'tcx>> {
if ptr.offset.bytes() != 0 {
return err!(InvalidFunctionPointer);
}
trace!("reading fn ptr: {}", ptr.alloc_id);
match self.tcx.alloc_map.lock().get(ptr.alloc_id) {
Some(GlobalAlloc::Function(instance)) => Ok(instance),
_ => Err(InterpError::ExecuteMemory.into()),
}
}
pub fn mark_immutable(&mut self, id: AllocId) -> InterpResult<'tcx> {
self.get_mut(id)?.mutability = Mutability::Immutable;
Ok(())
}
/// For debugging, print an allocation and all allocations it points to, recursively.
pub fn dump_alloc(&self, id: AllocId) {
self.dump_allocs(vec![id]);
}
fn dump_alloc_helper<Tag, Extra>(
&self,
allocs_seen: &mut FxHashSet<AllocId>,
allocs_to_print: &mut VecDeque<AllocId>,
mut msg: String,
alloc: &Allocation<Tag, Extra>,
extra: String,
) {
use std::fmt::Write;
let prefix_len = msg.len();
let mut relocations = vec![];
for i in 0..(alloc.bytes.len() as u64) {
let i = Size::from_bytes(i);
if let Some(&(_, target_id)) = alloc.relocations.get(&i) {
if allocs_seen.insert(target_id) {
allocs_to_print.push_back(target_id);
}
relocations.push((i, target_id));
}
if alloc.undef_mask.is_range_defined(i, i + Size::from_bytes(1)).is_ok() {
// this `as usize` is fine, since `i` came from a `usize`
write!(msg, "{:02x} ", alloc.bytes[i.bytes() as usize]).unwrap();
} else {
msg.push_str("__ ");
}
}
trace!(
"{}({} bytes, alignment {}){}",
msg,
alloc.bytes.len(),
alloc.align.bytes(),
extra
);
if !relocations.is_empty() {
msg.clear();
write!(msg, "{:1$}", "", prefix_len).unwrap(); // Print spaces.
let mut pos = Size::ZERO;
let relocation_width = (self.pointer_size().bytes() - 1) * 3;
for (i, target_id) in relocations {
// this `as usize` is fine, since we can't print more chars than `usize::MAX`
write!(msg, "{:1$}", "", ((i - pos) * 3).bytes() as usize).unwrap();
let target = format!("({})", target_id);
// this `as usize` is fine, since we can't print more chars than `usize::MAX`
write!(msg, "└{0:─^1$}┘ ", target, relocation_width as usize).unwrap();
pos = i + self.pointer_size();
}
trace!("{}", msg);
}
}
/// For debugging, print a list of allocations and all allocations they point to, recursively.
pub fn dump_allocs(&self, mut allocs: Vec<AllocId>) {
if !log_enabled!(::log::Level::Trace) {
return;
}
allocs.sort();
allocs.dedup();
let mut allocs_to_print = VecDeque::from(allocs);
let mut allocs_seen = FxHashSet::default();
while let Some(id) = allocs_to_print.pop_front() {
let msg = format!("Alloc {:<5} ", format!("{}:", id));
// normal alloc?
match self.alloc_map.get_or(id, || Err(())) {
Ok((kind, alloc)) => {
let extra = match kind {
MemoryKind::Stack => " (stack)".to_owned(),
MemoryKind::Vtable => " (vtable)".to_owned(),
MemoryKind::Machine(m) => format!(" ({:?})", m),
};
self.dump_alloc_helper(
&mut allocs_seen, &mut allocs_to_print,
msg, alloc, extra
);
},
Err(()) => {
// static alloc?
match self.tcx.alloc_map.lock().get(id) {
Some(GlobalAlloc::Memory(alloc)) => {
self.dump_alloc_helper(
&mut allocs_seen, &mut allocs_to_print,
msg, alloc, " (immutable)".to_owned()
);
}
Some(GlobalAlloc::Function(func)) => {
trace!("{} {}", msg, func);
}
Some(GlobalAlloc::Static(did)) => {
trace!("{} {:?}", msg, did);
}
None => {
trace!("{} (deallocated)", msg);
}
}
},
};
}
}
pub fn leak_report(&self) -> usize {
trace!("### LEAK REPORT ###");
let leaks: Vec<_> = self.alloc_map.filter_map_collect(|&id, &(kind, _)| {
if kind.may_leak() { None } else { Some(id) }
});
let n = leaks.len();
self.dump_allocs(leaks);
n
}
/// This is used by [priroda](https://github.com/oli-obk/priroda)
pub fn alloc_map(&self) -> &M::MemoryMap {
&self.alloc_map
}
}
/// Reading and writing.
impl<'mir, 'tcx, M: Machine<'mir, 'tcx>> Memory<'mir, 'tcx, M> {
/// Performs appropriate bounds checks.
pub fn read_bytes(
&self,
ptr: Scalar<M::PointerTag>,
size: Size,
) -> InterpResult<'tcx, &[u8]> {
let ptr = match self.check_ptr_access(ptr, size, Align::from_bytes(1).unwrap())? {
Some(ptr) => ptr,
None => return Ok(&[]), // zero-sized access
};
self.get(ptr.alloc_id)?.get_bytes(self, ptr, size)
}
/// Performs appropriate bounds checks.
pub fn copy(
&mut self,
src: Scalar<M::PointerTag>,
src_align: Align,
dest: Scalar<M::PointerTag>,
dest_align: Align,
size: Size,
nonoverlapping: bool,
) -> InterpResult<'tcx> {
self.copy_repeatedly(src, src_align, dest, dest_align, size, 1, nonoverlapping)
}
/// Performs appropriate bounds checks.
pub fn copy_repeatedly(
&mut self,
src: Scalar<M::PointerTag>,
src_align: Align,
dest: Scalar<M::PointerTag>,
dest_align: Align,
size: Size,
length: u64,
nonoverlapping: bool,
) -> InterpResult<'tcx> {
// We need to check *both* before early-aborting due to the size being 0.
let (src, dest) = match (self.check_ptr_access(src, size, src_align)?,
self.check_ptr_access(dest, size * length, dest_align)?)
{
(Some(src), Some(dest)) => (src, dest),
// One of the two sizes is 0.
_ => return Ok(()),
};
// first copy the relocations to a temporary buffer, because
// `get_bytes_mut` will clear the relocations, which is correct,
// since we don't want to keep any relocations at the target.
// (`get_bytes_with_undef_and_ptr` below checks that there are no
// relocations overlapping the edges; those would not be handled correctly).
let relocations = {
let relocations = self.get(src.alloc_id)?.relocations(self, src, size);
if relocations.is_empty() {
// nothing to copy, ignore even the `length` loop
Vec::new()
} else {
let mut new_relocations = Vec::with_capacity(relocations.len() * (length as usize));
for i in 0..length {
new_relocations.extend(
relocations
.iter()
.map(|&(offset, reloc)| {
// compute offset for current repetition
let dest_offset = dest.offset + (i * size);
(
// shift offsets from source allocation to destination allocation
offset + dest_offset - src.offset,
reloc,
)
})
);
}
new_relocations
}
};
let tcx = self.tcx.tcx;
// This checks relocation edges on the src.
let src_bytes = self.get(src.alloc_id)?
.get_bytes_with_undef_and_ptr(&tcx, src, size)?
.as_ptr();
let dest_bytes = self.get_mut(dest.alloc_id)?
.get_bytes_mut(&tcx, dest, size * length)?
.as_mut_ptr();
// SAFE: The above indexing would have panicked if there weren't at least `size` bytes
// behind `src` and `dest`. Also, we use the overlapping-safe `ptr::copy` if `src` and
// `dest` could possibly overlap.
// The pointers above remain valid even if the `HashMap` table is moved around because they
// point into the `Vec` storing the bytes.
unsafe {
assert_eq!(size.bytes() as usize as u64, size.bytes());
if src.alloc_id == dest.alloc_id {
if nonoverlapping {
if (src.offset <= dest.offset && src.offset + size > dest.offset) ||
(dest.offset <= src.offset && dest.offset + size > src.offset)
{
return err!(Intrinsic(
"copy_nonoverlapping called on overlapping ranges".to_string(),
));
}
}
for i in 0..length {
ptr::copy(src_bytes,
dest_bytes.offset((size.bytes() * i) as isize),
size.bytes() as usize);
}
} else {
for i in 0..length {
ptr::copy_nonoverlapping(src_bytes,
dest_bytes.offset((size.bytes() * i) as isize),
size.bytes() as usize);
}
}
}
// copy definedness to the destination
self.copy_undef_mask(src, dest, size, length)?;
// copy the relocations to the destination
self.get_mut(dest.alloc_id)?.relocations.insert_presorted(relocations);
Ok(())
}
}
/// Undefined bytes
impl<'mir, 'tcx, M: Machine<'mir, 'tcx>> Memory<'mir, 'tcx, M> {
// FIXME: Add a fast version for the common, nonoverlapping case
fn copy_undef_mask(
&mut self,
src: Pointer<M::PointerTag>,
dest: Pointer<M::PointerTag>,
size: Size,
repeat: u64,
) -> InterpResult<'tcx> {
// The bits have to be saved locally before writing to dest in case src and dest overlap.
assert_eq!(size.bytes() as usize as u64, size.bytes());
let undef_mask = &self.get(src.alloc_id)?.undef_mask;
// Since we are copying `size` bytes from `src` to `dest + i * size` (`for i in 0..repeat`),
// a naive undef mask copying algorithm would repeatedly have to read the undef mask from
// the source and write it to the destination. Even if we optimized the memory accesses,
// we'd be doing all of this `repeat` times.
// Therefor we precompute a compressed version of the undef mask of the source value and
// then write it back `repeat` times without computing any more information from the source.
// a precomputed cache for ranges of defined/undefined bits
// 0000010010001110 will become
// [5, 1, 2, 1, 3, 3, 1]
// where each element toggles the state
let mut ranges = smallvec::SmallVec::<[u64; 1]>::new();
let first = undef_mask.get(src.offset);
let mut cur_len = 1;
let mut cur = first;
for i in 1..size.bytes() {
// FIXME: optimize to bitshift the current undef block's bits and read the top bit
if undef_mask.get(src.offset + Size::from_bytes(i)) == cur {
cur_len += 1;
} else {
ranges.push(cur_len);
cur_len = 1;
cur = !cur;
}
}
// now fill in all the data
let dest_allocation = self.get_mut(dest.alloc_id)?;
// an optimization where we can just overwrite an entire range of definedness bits if
// they are going to be uniformly `1` or `0`.
if ranges.is_empty() {
dest_allocation.undef_mask.set_range_inbounds(
dest.offset,
dest.offset + size * repeat,
first,
);
return Ok(())
}
// remember to fill in the trailing bits
ranges.push(cur_len);
for mut j in 0..repeat {
j *= size.bytes();
j += dest.offset.bytes();
let mut cur = first;
for range in &ranges {
let old_j = j;
j += range;
dest_allocation.undef_mask.set_range_inbounds(
Size::from_bytes(old_j),
Size::from_bytes(j),
cur,
);
cur = !cur;
}
}
Ok(())
}
pub fn force_ptr(
&self,
scalar: Scalar<M::PointerTag>,
) -> InterpResult<'tcx, Pointer<M::PointerTag>> {
match scalar {
Scalar::Ptr(ptr) => Ok(ptr),
_ => M::int_to_ptr(scalar.to_usize(self)?, self)
}
}
pub fn force_bits(
&self,
scalar: Scalar<M::PointerTag>,
size: Size
) -> InterpResult<'tcx, u128> {
match scalar.to_bits_or_ptr(size, self) {
Ok(bits) => Ok(bits),
Err(ptr) => Ok(M::ptr_to_int(ptr, self)? as u128)
}
}
}