-
Notifications
You must be signed in to change notification settings - Fork 12.9k
/
mutex.rs
221 lines (191 loc) · 5.68 KB
/
mutex.rs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
use crate::cell::UnsafeCell;
use crate::collections::VecDeque;
use crate::hint;
use crate::ops::{Deref, DerefMut, Drop};
use crate::ptr;
use crate::sync::atomic::{AtomicUsize, Ordering};
use crate::sys::hermit::abi;
/// This type provides a lock based on busy waiting to realize mutual exclusion
///
/// # Description
///
/// This structure behaves a lot like a common mutex. There are some differences:
///
/// - By using busy waiting, it can be used outside the runtime.
/// - It is a so called ticket lock and is completely fair.
#[cfg_attr(target_arch = "x86_64", repr(align(128)))]
#[cfg_attr(not(target_arch = "x86_64"), repr(align(64)))]
struct Spinlock<T: ?Sized> {
queue: AtomicUsize,
dequeue: AtomicUsize,
data: UnsafeCell<T>,
}
unsafe impl<T: ?Sized + Send> Sync for Spinlock<T> {}
unsafe impl<T: ?Sized + Send> Send for Spinlock<T> {}
/// A guard to which the protected data can be accessed
///
/// When the guard falls out of scope it will release the lock.
struct SpinlockGuard<'a, T: ?Sized + 'a> {
dequeue: &'a AtomicUsize,
data: &'a mut T,
}
impl<T> Spinlock<T> {
pub const fn new(user_data: T) -> Spinlock<T> {
Spinlock {
queue: AtomicUsize::new(0),
dequeue: AtomicUsize::new(1),
data: UnsafeCell::new(user_data),
}
}
#[inline]
fn obtain_lock(&self) {
let ticket = self.queue.fetch_add(1, Ordering::SeqCst) + 1;
let mut counter: u16 = 0;
while self.dequeue.load(Ordering::SeqCst) != ticket {
counter += 1;
if counter < 100 {
hint::spin_loop();
} else {
counter = 0;
unsafe {
abi::yield_now();
}
}
}
}
#[inline]
pub unsafe fn lock(&self) -> SpinlockGuard<'_, T> {
self.obtain_lock();
SpinlockGuard { dequeue: &self.dequeue, data: &mut *self.data.get() }
}
}
impl<T: ?Sized + Default> Default for Spinlock<T> {
fn default() -> Spinlock<T> {
Spinlock::new(Default::default())
}
}
impl<'a, T: ?Sized> Deref for SpinlockGuard<'a, T> {
type Target = T;
fn deref(&self) -> &T {
&*self.data
}
}
impl<'a, T: ?Sized> DerefMut for SpinlockGuard<'a, T> {
fn deref_mut(&mut self) -> &mut T {
&mut *self.data
}
}
impl<'a, T: ?Sized> Drop for SpinlockGuard<'a, T> {
/// The dropping of the SpinlockGuard will release the lock it was created from.
fn drop(&mut self) {
self.dequeue.fetch_add(1, Ordering::SeqCst);
}
}
/// Realize a priority queue for tasks
struct PriorityQueue {
queues: [Option<VecDeque<abi::Tid>>; abi::NO_PRIORITIES],
prio_bitmap: u64,
}
impl PriorityQueue {
pub const fn new() -> PriorityQueue {
PriorityQueue {
queues: [
None, None, None, None, None, None, None, None, None, None, None, None, None, None,
None, None, None, None, None, None, None, None, None, None, None, None, None, None,
None, None, None,
],
prio_bitmap: 0,
}
}
/// Add a task id by its priority to the queue
pub fn push(&mut self, prio: abi::Priority, id: abi::Tid) {
let i: usize = prio.into().into();
self.prio_bitmap |= (1 << i) as u64;
if let Some(queue) = &mut self.queues[i] {
queue.push_back(id);
} else {
let mut queue = VecDeque::new();
queue.push_back(id);
self.queues[i] = Some(queue);
}
}
fn pop_from_queue(&mut self, queue_index: usize) -> Option<abi::Tid> {
if let Some(queue) = &mut self.queues[queue_index] {
let id = queue.pop_front();
if queue.is_empty() {
self.prio_bitmap &= !(1 << queue_index as u64);
}
id
} else {
None
}
}
/// Pop the task handle with the highest priority from the queue
pub fn pop(&mut self) -> Option<abi::Tid> {
for i in 0..abi::NO_PRIORITIES {
if self.prio_bitmap & (1 << i) != 0 {
return self.pop_from_queue(i);
}
}
None
}
}
struct MutexInner {
locked: bool,
blocked_task: PriorityQueue,
}
impl MutexInner {
pub const fn new() -> MutexInner {
MutexInner { locked: false, blocked_task: PriorityQueue::new() }
}
}
pub struct Mutex {
inner: Spinlock<MutexInner>,
}
pub type MovableMutex = Mutex;
unsafe impl Send for Mutex {}
unsafe impl Sync for Mutex {}
impl Mutex {
pub const fn new() -> Mutex {
Mutex { inner: Spinlock::new(MutexInner::new()) }
}
#[inline]
pub unsafe fn init(&mut self) {
self.inner = Spinlock::new(MutexInner::new());
}
#[inline]
pub unsafe fn lock(&self) {
loop {
let mut guard = self.inner.lock();
if guard.locked == false {
guard.locked = true;
return;
} else {
let prio = abi::get_priority();
let id = abi::getpid();
guard.blocked_task.push(prio, id);
abi::block_current_task();
drop(guard);
abi::yield_now();
}
}
}
#[inline]
pub unsafe fn unlock(&self) {
let mut guard = self.inner.lock();
guard.locked = false;
if let Some(tid) = guard.blocked_task.pop() {
abi::wakeup_task(tid);
}
}
#[inline]
pub unsafe fn try_lock(&self) -> bool {
let mut guard = self.inner.lock();
if guard.locked == false {
guard.locked = true;
}
guard.locked
}
#[inline]
pub unsafe fn destroy(&self) {}
}