-
Notifications
You must be signed in to change notification settings - Fork 12.8k
/
locator.rs
926 lines (876 loc) · 38.7 KB
/
locator.rs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
// Copyright 2012-2015 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
//! Finds crate binaries and loads their metadata
//!
//! Might I be the first to welcome you to a world of platform differences,
//! version requirements, dependency graphs, conflicting desires, and fun! This
//! is the major guts (along with metadata::creader) of the compiler for loading
//! crates and resolving dependencies. Let's take a tour!
//!
//! # The problem
//!
//! Each invocation of the compiler is immediately concerned with one primary
//! problem, to connect a set of crates to resolved crates on the filesystem.
//! Concretely speaking, the compiler follows roughly these steps to get here:
//!
//! 1. Discover a set of `extern crate` statements.
//! 2. Transform these directives into crate names. If the directive does not
//! have an explicit name, then the identifier is the name.
//! 3. For each of these crate names, find a corresponding crate on the
//! filesystem.
//!
//! Sounds easy, right? Let's walk into some of the nuances.
//!
//! ## Transitive Dependencies
//!
//! Let's say we've got three crates: A, B, and C. A depends on B, and B depends
//! on C. When we're compiling A, we primarily need to find and locate B, but we
//! also end up needing to find and locate C as well.
//!
//! The reason for this is that any of B's types could be composed of C's types,
//! any function in B could return a type from C, etc. To be able to guarantee
//! that we can always typecheck/translate any function, we have to have
//! complete knowledge of the whole ecosystem, not just our immediate
//! dependencies.
//!
//! So now as part of the "find a corresponding crate on the filesystem" step
//! above, this involves also finding all crates for *all upstream
//! dependencies*. This includes all dependencies transitively.
//!
//! ## Rlibs and Dylibs
//!
//! The compiler has two forms of intermediate dependencies. These are dubbed
//! rlibs and dylibs for the static and dynamic variants, respectively. An rlib
//! is a rustc-defined file format (currently just an ar archive) while a dylib
//! is a platform-defined dynamic library. Each library has a metadata somewhere
//! inside of it.
//!
//! A third kind of dependency is an rmeta file. These are metadata files and do
//! not contain any code, etc. To a first approximation, these are treated in the
//! same way as rlibs. Where there is both an rlib and an rmeta file, the rlib
//! gets priority (even if the rmeta file is newer). An rmeta file is only
//! useful for checking a downstream crate, attempting to link one will cause an
//! error.
//!
//! When translating a crate name to a crate on the filesystem, we all of a
//! sudden need to take into account both rlibs and dylibs! Linkage later on may
//! use either one of these files, as each has their pros/cons. The job of crate
//! loading is to discover what's possible by finding all candidates.
//!
//! Most parts of this loading systems keep the dylib/rlib as just separate
//! variables.
//!
//! ## Where to look?
//!
//! We can't exactly scan your whole hard drive when looking for dependencies,
//! so we need to places to look. Currently the compiler will implicitly add the
//! target lib search path ($prefix/lib/rustlib/$target/lib) to any compilation,
//! and otherwise all -L flags are added to the search paths.
//!
//! ## What criterion to select on?
//!
//! This a pretty tricky area of loading crates. Given a file, how do we know
//! whether it's the right crate? Currently, the rules look along these lines:
//!
//! 1. Does the filename match an rlib/dylib pattern? That is to say, does the
//! filename have the right prefix/suffix?
//! 2. Does the filename have the right prefix for the crate name being queried?
//! This is filtering for files like `libfoo*.rlib` and such. If the crate
//! we're looking for was originally compiled with -C extra-filename, the
//! extra filename will be included in this prefix to reduce reading
//! metadata from crates that would otherwise share our prefix.
//! 3. Is the file an actual rust library? This is done by loading the metadata
//! from the library and making sure it's actually there.
//! 4. Does the name in the metadata agree with the name of the library?
//! 5. Does the target in the metadata agree with the current target?
//! 6. Does the SVH match? (more on this later)
//!
//! If the file answers `yes` to all these questions, then the file is
//! considered as being *candidate* for being accepted. It is illegal to have
//! more than two candidates as the compiler has no method by which to resolve
//! this conflict. Additionally, rlib/dylib candidates are considered
//! separately.
//!
//! After all this has happened, we have 1 or two files as candidates. These
//! represent the rlib/dylib file found for a library, and they're returned as
//! being found.
//!
//! ### What about versions?
//!
//! A lot of effort has been put forth to remove versioning from the compiler.
//! There have been forays in the past to have versioning baked in, but it was
//! largely always deemed insufficient to the point that it was recognized that
//! it's probably something the compiler shouldn't do anyway due to its
//! complicated nature and the state of the half-baked solutions.
//!
//! With a departure from versioning, the primary criterion for loading crates
//! is just the name of a crate. If we stopped here, it would imply that you
//! could never link two crates of the same name from different sources
//! together, which is clearly a bad state to be in.
//!
//! To resolve this problem, we come to the next section!
//!
//! # Expert Mode
//!
//! A number of flags have been added to the compiler to solve the "version
//! problem" in the previous section, as well as generally enabling more
//! powerful usage of the crate loading system of the compiler. The goal of
//! these flags and options are to enable third-party tools to drive the
//! compiler with prior knowledge about how the world should look.
//!
//! ## The `--extern` flag
//!
//! The compiler accepts a flag of this form a number of times:
//!
//! ```text
//! --extern crate-name=path/to/the/crate.rlib
//! ```
//!
//! This flag is basically the following letter to the compiler:
//!
//! > Dear rustc,
//! >
//! > When you are attempting to load the immediate dependency `crate-name`, I
//! > would like you to assume that the library is located at
//! > `path/to/the/crate.rlib`, and look nowhere else. Also, please do not
//! > assume that the path I specified has the name `crate-name`.
//!
//! This flag basically overrides most matching logic except for validating that
//! the file is indeed a rust library. The same `crate-name` can be specified
//! twice to specify the rlib/dylib pair.
//!
//! ## Enabling "multiple versions"
//!
//! This basically boils down to the ability to specify arbitrary packages to
//! the compiler. For example, if crate A wanted to use Bv1 and Bv2, then it
//! would look something like:
//!
//! ```compile_fail,E0463
//! extern crate b1;
//! extern crate b2;
//!
//! fn main() {}
//! ```
//!
//! and the compiler would be invoked as:
//!
//! ```text
//! rustc a.rs --extern b1=path/to/libb1.rlib --extern b2=path/to/libb2.rlib
//! ```
//!
//! In this scenario there are two crates named `b` and the compiler must be
//! manually driven to be informed where each crate is.
//!
//! ## Frobbing symbols
//!
//! One of the immediate problems with linking the same library together twice
//! in the same problem is dealing with duplicate symbols. The primary way to
//! deal with this in rustc is to add hashes to the end of each symbol.
//!
//! In order to force hashes to change between versions of a library, if
//! desired, the compiler exposes an option `-C metadata=foo`, which is used to
//! initially seed each symbol hash. The string `foo` is prepended to each
//! string-to-hash to ensure that symbols change over time.
//!
//! ## Loading transitive dependencies
//!
//! Dealing with same-named-but-distinct crates is not just a local problem, but
//! one that also needs to be dealt with for transitive dependencies. Note that
//! in the letter above `--extern` flags only apply to the *local* set of
//! dependencies, not the upstream transitive dependencies. Consider this
//! dependency graph:
//!
//! ```text
//! A.1 A.2
//! | |
//! | |
//! B C
//! \ /
//! \ /
//! D
//! ```
//!
//! In this scenario, when we compile `D`, we need to be able to distinctly
//! resolve `A.1` and `A.2`, but an `--extern` flag cannot apply to these
//! transitive dependencies.
//!
//! Note that the key idea here is that `B` and `C` are both *already compiled*.
//! That is, they have already resolved their dependencies. Due to unrelated
//! technical reasons, when a library is compiled, it is only compatible with
//! the *exact same* version of the upstream libraries it was compiled against.
//! We use the "Strict Version Hash" to identify the exact copy of an upstream
//! library.
//!
//! With this knowledge, we know that `B` and `C` will depend on `A` with
//! different SVH values, so we crawl the normal `-L` paths looking for
//! `liba*.rlib` and filter based on the contained SVH.
//!
//! In the end, this ends up not needing `--extern` to specify upstream
//! transitive dependencies.
//!
//! # Wrapping up
//!
//! That's the general overview of loading crates in the compiler, but it's by
//! no means all of the necessary details. Take a look at the rest of
//! metadata::locator or metadata::creader for all the juicy details!
use cstore::{MetadataRef, MetadataBlob};
use creader::Library;
use schema::{METADATA_HEADER, rustc_version};
use rustc_data_structures::fx::FxHashSet;
use rustc_data_structures::svh::Svh;
use rustc::middle::cstore::MetadataLoader;
use rustc::session::{config, Session};
use rustc::session::filesearch::{FileSearch, FileMatches, FileDoesntMatch};
use rustc::session::search_paths::PathKind;
use rustc::util::nodemap::FxHashMap;
use errors::DiagnosticBuilder;
use syntax::symbol::Symbol;
use syntax_pos::Span;
use rustc_target::spec::{Target, TargetTriple};
use std::cmp;
use std::fmt;
use std::fs;
use std::io::{self, Read};
use std::path::{Path, PathBuf};
use std::time::Instant;
use flate2::read::DeflateDecoder;
use rustc_data_structures::owning_ref::OwningRef;
pub struct CrateMismatch {
path: PathBuf,
got: String,
}
pub struct Context<'a> {
pub sess: &'a Session,
pub span: Span,
pub ident: Symbol,
pub crate_name: Symbol,
pub hash: Option<&'a Svh>,
pub extra_filename: Option<&'a str>,
// points to either self.sess.target.target or self.sess.host, must match triple
pub target: &'a Target,
pub triple: &'a TargetTriple,
pub filesearch: FileSearch<'a>,
pub root: &'a Option<CratePaths>,
pub rejected_via_hash: Vec<CrateMismatch>,
pub rejected_via_triple: Vec<CrateMismatch>,
pub rejected_via_kind: Vec<CrateMismatch>,
pub rejected_via_version: Vec<CrateMismatch>,
pub rejected_via_filename: Vec<CrateMismatch>,
pub should_match_name: bool,
pub is_proc_macro: Option<bool>,
pub metadata_loader: &'a dyn MetadataLoader,
}
pub struct CratePaths {
pub ident: String,
pub dylib: Option<PathBuf>,
pub rlib: Option<PathBuf>,
pub rmeta: Option<PathBuf>,
}
#[derive(Copy, Clone, PartialEq)]
enum CrateFlavor {
Rlib,
Rmeta,
Dylib,
}
impl fmt::Display for CrateFlavor {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
f.write_str(match *self {
CrateFlavor::Rlib => "rlib",
CrateFlavor::Rmeta => "rmeta",
CrateFlavor::Dylib => "dylib",
})
}
}
impl CratePaths {
fn paths(&self) -> Vec<PathBuf> {
self.dylib.iter().chain(self.rlib.iter()).chain(self.rmeta.iter()).cloned().collect()
}
}
impl<'a> Context<'a> {
pub fn maybe_load_library_crate(&mut self) -> Option<Library> {
let mut seen_paths = FxHashSet::default();
match self.extra_filename {
Some(s) => self.find_library_crate(s, &mut seen_paths)
.or_else(|| self.find_library_crate("", &mut seen_paths)),
None => self.find_library_crate("", &mut seen_paths)
}
}
pub fn report_errs(&mut self) -> ! {
let add = match self.root {
&None => String::new(),
&Some(ref r) => format!(" which `{}` depends on", r.ident),
};
let mut msg = "the following crate versions were found:".to_string();
let mut err = if !self.rejected_via_hash.is_empty() {
let mut err = struct_span_err!(self.sess,
self.span,
E0460,
"found possibly newer version of crate `{}`{}",
self.ident,
add);
err.note("perhaps that crate needs to be recompiled?");
let mismatches = self.rejected_via_hash.iter();
for &CrateMismatch { ref path, .. } in mismatches {
msg.push_str(&format!("\ncrate `{}`: {}", self.ident, path.display()));
}
match self.root {
&None => {}
&Some(ref r) => {
for path in r.paths().iter() {
msg.push_str(&format!("\ncrate `{}`: {}", r.ident, path.display()));
}
}
}
err.note(&msg);
err
} else if !self.rejected_via_triple.is_empty() {
let mut err = struct_span_err!(self.sess,
self.span,
E0461,
"couldn't find crate `{}` \
with expected target triple {}{}",
self.ident,
self.triple,
add);
let mismatches = self.rejected_via_triple.iter();
for &CrateMismatch { ref path, ref got } in mismatches {
msg.push_str(&format!("\ncrate `{}`, target triple {}: {}",
self.ident,
got,
path.display()));
}
err.note(&msg);
err
} else if !self.rejected_via_kind.is_empty() {
let mut err = struct_span_err!(self.sess,
self.span,
E0462,
"found staticlib `{}` instead of rlib or dylib{}",
self.ident,
add);
err.help("please recompile that crate using --crate-type lib");
let mismatches = self.rejected_via_kind.iter();
for &CrateMismatch { ref path, .. } in mismatches {
msg.push_str(&format!("\ncrate `{}`: {}", self.ident, path.display()));
}
err.note(&msg);
err
} else if !self.rejected_via_version.is_empty() {
let mut err = struct_span_err!(self.sess,
self.span,
E0514,
"found crate `{}` compiled by an incompatible version \
of rustc{}",
self.ident,
add);
err.help(&format!("please recompile that crate using this compiler ({})",
rustc_version()));
let mismatches = self.rejected_via_version.iter();
for &CrateMismatch { ref path, ref got } in mismatches {
msg.push_str(&format!("\ncrate `{}` compiled by {}: {}",
self.ident,
got,
path.display()));
}
err.note(&msg);
err
} else {
let mut err = struct_span_err!(self.sess,
self.span,
E0463,
"can't find crate for `{}`{}",
self.ident,
add);
if (self.ident == "std" || self.ident == "core")
&& self.triple != &TargetTriple::from_triple(config::host_triple()) {
err.note(&format!("the `{}` target may not be installed", self.triple));
}
err.span_label(self.span, "can't find crate");
err
};
if !self.rejected_via_filename.is_empty() {
let dylibname = self.dylibname();
let mismatches = self.rejected_via_filename.iter();
for &CrateMismatch { ref path, .. } in mismatches {
err.note(&format!("extern location for {} is of an unknown type: {}",
self.crate_name,
path.display()))
.help(&format!("file name should be lib*.rlib or {}*.{}",
dylibname.0,
dylibname.1));
}
}
err.emit();
self.sess.abort_if_errors();
unreachable!();
}
fn find_library_crate(&mut self,
extra_prefix: &str,
seen_paths: &mut FxHashSet<PathBuf>)
-> Option<Library> {
// If an SVH is specified, then this is a transitive dependency that
// must be loaded via -L plus some filtering.
if self.hash.is_none() {
self.should_match_name = false;
if let Some(s) = self.sess.opts.externs.get(&self.crate_name.as_str()) {
// Only use `--extern crate_name=path` here, not `--extern crate_name`.
if s.iter().any(|l| l.is_some()) {
return self.find_commandline_library(
s.iter().filter_map(|l| l.as_ref()),
);
}
}
self.should_match_name = true;
}
let dypair = self.dylibname();
let staticpair = self.staticlibname();
// want: crate_name.dir_part() + prefix + crate_name.file_part + "-"
let dylib_prefix = format!("{}{}{}", dypair.0, self.crate_name, extra_prefix);
let rlib_prefix = format!("lib{}{}", self.crate_name, extra_prefix);
let staticlib_prefix = format!("{}{}{}", staticpair.0, self.crate_name, extra_prefix);
let mut candidates: FxHashMap<
_,
(FxHashMap<_, _>, FxHashMap<_, _>, FxHashMap<_, _>),
> = Default::default();
let mut staticlibs = vec![];
// First, find all possible candidate rlibs and dylibs purely based on
// the name of the files themselves. We're trying to match against an
// exact crate name and a possibly an exact hash.
//
// During this step, we can filter all found libraries based on the
// name and id found in the crate id (we ignore the path portion for
// filename matching), as well as the exact hash (if specified). If we
// end up having many candidates, we must look at the metadata to
// perform exact matches against hashes/crate ids. Note that opening up
// the metadata is where we do an exact match against the full contents
// of the crate id (path/name/id).
//
// The goal of this step is to look at as little metadata as possible.
self.filesearch.search(|path, kind| {
let file = match path.file_name().and_then(|s| s.to_str()) {
None => return FileDoesntMatch,
Some(file) => file,
};
let (hash, found_kind) =
if file.starts_with(&rlib_prefix) && file.ends_with(".rlib") {
(&file[(rlib_prefix.len())..(file.len() - ".rlib".len())], CrateFlavor::Rlib)
} else if file.starts_with(&rlib_prefix) && file.ends_with(".rmeta") {
(&file[(rlib_prefix.len())..(file.len() - ".rmeta".len())], CrateFlavor::Rmeta)
} else if file.starts_with(&dylib_prefix) &&
file.ends_with(&dypair.1) {
(&file[(dylib_prefix.len())..(file.len() - dypair.1.len())], CrateFlavor::Dylib)
} else {
if file.starts_with(&staticlib_prefix) && file.ends_with(&staticpair.1) {
staticlibs.push(CrateMismatch {
path: path.to_path_buf(),
got: "static".to_string(),
});
}
return FileDoesntMatch;
};
info!("lib candidate: {}", path.display());
let hash_str = hash.to_string();
let slot = candidates.entry(hash_str).or_default();
let (ref mut rlibs, ref mut rmetas, ref mut dylibs) = *slot;
fs::canonicalize(path)
.map(|p| {
if seen_paths.contains(&p) {
return FileDoesntMatch
};
seen_paths.insert(p.clone());
match found_kind {
CrateFlavor::Rlib => { rlibs.insert(p, kind); }
CrateFlavor::Rmeta => { rmetas.insert(p, kind); }
CrateFlavor::Dylib => { dylibs.insert(p, kind); }
}
FileMatches
})
.unwrap_or(FileDoesntMatch)
});
self.rejected_via_kind.extend(staticlibs);
// We have now collected all known libraries into a set of candidates
// keyed of the filename hash listed. For each filename, we also have a
// list of rlibs/dylibs that apply. Here, we map each of these lists
// (per hash), to a Library candidate for returning.
//
// A Library candidate is created if the metadata for the set of
// libraries corresponds to the crate id and hash criteria that this
// search is being performed for.
let mut libraries = FxHashMap::default();
for (_hash, (rlibs, rmetas, dylibs)) in candidates {
let mut slot = None;
let rlib = self.extract_one(rlibs, CrateFlavor::Rlib, &mut slot);
let rmeta = self.extract_one(rmetas, CrateFlavor::Rmeta, &mut slot);
let dylib = self.extract_one(dylibs, CrateFlavor::Dylib, &mut slot);
if let Some((h, m)) = slot {
libraries.insert(h,
Library {
dylib,
rlib,
rmeta,
metadata: m,
});
}
}
// Having now translated all relevant found hashes into libraries, see
// what we've got and figure out if we found multiple candidates for
// libraries or not.
match libraries.len() {
0 => None,
1 => Some(libraries.into_iter().next().unwrap().1),
_ => {
let mut err = struct_span_err!(self.sess,
self.span,
E0464,
"multiple matching crates for `{}`",
self.crate_name);
let candidates = libraries.iter().filter_map(|(_, lib)| {
let crate_name = &lib.metadata.get_root().name.as_str();
match &(&lib.dylib, &lib.rlib) {
&(&Some((ref pd, _)), &Some((ref pr, _))) => {
Some(format!("\ncrate `{}`: {}\n{:>padding$}",
crate_name,
pd.display(),
pr.display(),
padding=8 + crate_name.len()))
}
&(&Some((ref p, _)), &None) | &(&None, &Some((ref p, _))) => {
Some(format!("\ncrate `{}`: {}", crate_name, p.display()))
}
&(&None, &None) => None,
}
}).collect::<String>();
err.note(&format!("candidates:{}", candidates));
err.emit();
None
}
}
}
// Attempts to extract *one* library from the set `m`. If the set has no
// elements, `None` is returned. If the set has more than one element, then
// the errors and notes are emitted about the set of libraries.
//
// With only one library in the set, this function will extract it, and then
// read the metadata from it if `*slot` is `None`. If the metadata couldn't
// be read, it is assumed that the file isn't a valid rust library (no
// errors are emitted).
fn extract_one(&mut self,
m: FxHashMap<PathBuf, PathKind>,
flavor: CrateFlavor,
slot: &mut Option<(Svh, MetadataBlob)>)
-> Option<(PathBuf, PathKind)> {
let mut ret: Option<(PathBuf, PathKind)> = None;
let mut error = 0;
if slot.is_some() {
// FIXME(#10786): for an optimization, we only read one of the
// libraries' metadata sections. In theory we should
// read both, but reading dylib metadata is quite
// slow.
if m.is_empty() {
return None;
} else if m.len() == 1 {
return Some(m.into_iter().next().unwrap());
}
}
let mut err: Option<DiagnosticBuilder> = None;
for (lib, kind) in m {
info!("{} reading metadata from: {}", flavor, lib.display());
let (hash, metadata) =
match get_metadata_section(self.target, flavor, &lib, self.metadata_loader) {
Ok(blob) => {
if let Some(h) = self.crate_matches(&blob, &lib) {
(h, blob)
} else {
info!("metadata mismatch");
continue;
}
}
Err(err) => {
warn!("no metadata found: {}", err);
continue;
}
};
// If we see multiple hashes, emit an error about duplicate candidates.
if slot.as_ref().map_or(false, |s| s.0 != hash) {
let mut e = struct_span_err!(self.sess,
self.span,
E0465,
"multiple {} candidates for `{}` found",
flavor,
self.crate_name);
e.span_note(self.span,
&format!(r"candidate #1: {}",
ret.as_ref()
.unwrap()
.0
.display()));
if let Some(ref mut e) = err {
e.emit();
}
err = Some(e);
error = 1;
*slot = None;
}
if error > 0 {
error += 1;
err.as_mut().unwrap().span_note(self.span,
&format!(r"candidate #{}: {}",
error,
lib.display()));
continue;
}
// Ok so at this point we've determined that `(lib, kind)` above is
// a candidate crate to load, and that `slot` is either none (this
// is the first crate of its kind) or if some the previous path has
// the exact same hash (e.g. it's the exact same crate).
//
// In principle these two candidate crates are exactly the same so
// we can choose either of them to link. As a stupidly gross hack,
// however, we favor crate in the sysroot.
//
// You can find more info in rust-lang/rust#39518 and various linked
// issues, but the general gist is that during testing libstd the
// compilers has two candidates to choose from: one in the sysroot
// and one in the deps folder. These two crates are the exact same
// crate but if the compiler chooses the one in the deps folder
// it'll cause spurious errors on Windows.
//
// As a result, we favor the sysroot crate here. Note that the
// candidates are all canonicalized, so we canonicalize the sysroot
// as well.
if let Some((ref prev, _)) = ret {
let sysroot = self.sess.sysroot();
let sysroot = sysroot.canonicalize()
.unwrap_or_else(|_| sysroot.to_path_buf());
if prev.starts_with(&sysroot) {
continue
}
}
*slot = Some((hash, metadata));
ret = Some((lib, kind));
}
if error > 0 {
err.unwrap().emit();
None
} else {
ret
}
}
fn crate_matches(&mut self, metadata: &MetadataBlob, libpath: &Path) -> Option<Svh> {
let rustc_version = rustc_version();
let found_version = metadata.get_rustc_version();
if found_version != rustc_version {
info!("Rejecting via version: expected {} got {}",
rustc_version,
found_version);
self.rejected_via_version.push(CrateMismatch {
path: libpath.to_path_buf(),
got: found_version,
});
return None;
}
let root = metadata.get_root();
if let Some(is_proc_macro) = self.is_proc_macro {
if root.macro_derive_registrar.is_some() != is_proc_macro {
return None;
}
}
if self.should_match_name {
if self.crate_name != root.name {
info!("Rejecting via crate name");
return None;
}
}
if &root.triple != self.triple {
info!("Rejecting via crate triple: expected {} got {}",
self.triple,
root.triple);
self.rejected_via_triple.push(CrateMismatch {
path: libpath.to_path_buf(),
got: root.triple.to_string(),
});
return None;
}
if let Some(myhash) = self.hash {
if *myhash != root.hash {
info!("Rejecting via hash: expected {} got {}", *myhash, root.hash);
self.rejected_via_hash.push(CrateMismatch {
path: libpath.to_path_buf(),
got: myhash.to_string(),
});
return None;
}
}
Some(root.hash)
}
// Returns the corresponding (prefix, suffix) that files need to have for
// dynamic libraries
fn dylibname(&self) -> (String, String) {
let t = &self.target;
(t.options.dll_prefix.clone(), t.options.dll_suffix.clone())
}
// Returns the corresponding (prefix, suffix) that files need to have for
// static libraries
fn staticlibname(&self) -> (String, String) {
let t = &self.target;
(t.options.staticlib_prefix.clone(), t.options.staticlib_suffix.clone())
}
fn find_commandline_library<'b, LOCS>(&mut self, locs: LOCS) -> Option<Library>
where LOCS: Iterator<Item = &'b String>
{
// First, filter out all libraries that look suspicious. We only accept
// files which actually exist that have the correct naming scheme for
// rlibs/dylibs.
let sess = self.sess;
let dylibname = self.dylibname();
let mut rlibs = FxHashMap::default();
let mut rmetas = FxHashMap::default();
let mut dylibs = FxHashMap::default();
{
let locs = locs.map(|l| PathBuf::from(l)).filter(|loc| {
if !loc.exists() {
sess.err(&format!("extern location for {} does not exist: {}",
self.crate_name,
loc.display()));
return false;
}
let file = match loc.file_name().and_then(|s| s.to_str()) {
Some(file) => file,
None => {
sess.err(&format!("extern location for {} is not a file: {}",
self.crate_name,
loc.display()));
return false;
}
};
if file.starts_with("lib") &&
(file.ends_with(".rlib") || file.ends_with(".rmeta")) {
return true;
} else {
let (ref prefix, ref suffix) = dylibname;
if file.starts_with(&prefix[..]) && file.ends_with(&suffix[..]) {
return true;
}
}
self.rejected_via_filename.push(CrateMismatch {
path: loc.clone(),
got: String::new(),
});
false
});
// Now that we have an iterator of good candidates, make sure
// there's at most one rlib and at most one dylib.
for loc in locs {
if loc.file_name().unwrap().to_str().unwrap().ends_with(".rlib") {
rlibs.insert(fs::canonicalize(&loc).unwrap(), PathKind::ExternFlag);
} else if loc.file_name().unwrap().to_str().unwrap().ends_with(".rmeta") {
rmetas.insert(fs::canonicalize(&loc).unwrap(), PathKind::ExternFlag);
} else {
dylibs.insert(fs::canonicalize(&loc).unwrap(), PathKind::ExternFlag);
}
}
};
// Extract the rlib/dylib pair.
let mut slot = None;
let rlib = self.extract_one(rlibs, CrateFlavor::Rlib, &mut slot);
let rmeta = self.extract_one(rmetas, CrateFlavor::Rmeta, &mut slot);
let dylib = self.extract_one(dylibs, CrateFlavor::Dylib, &mut slot);
if rlib.is_none() && rmeta.is_none() && dylib.is_none() {
return None;
}
slot.map(|(_, metadata)|
Library {
dylib,
rlib,
rmeta,
metadata,
}
)
}
}
// Just a small wrapper to time how long reading metadata takes.
fn get_metadata_section(target: &Target,
flavor: CrateFlavor,
filename: &Path,
loader: &dyn MetadataLoader)
-> Result<MetadataBlob, String> {
let start = Instant::now();
let ret = get_metadata_section_imp(target, flavor, filename, loader);
info!("reading {:?} => {:?}",
filename.file_name().unwrap(),
start.elapsed());
return ret;
}
fn get_metadata_section_imp(target: &Target,
flavor: CrateFlavor,
filename: &Path,
loader: &dyn MetadataLoader)
-> Result<MetadataBlob, String> {
if !filename.exists() {
return Err(format!("no such file: '{}'", filename.display()));
}
let raw_bytes: MetadataRef = match flavor {
CrateFlavor::Rlib => loader.get_rlib_metadata(target, filename)?,
CrateFlavor::Dylib => {
let buf = loader.get_dylib_metadata(target, filename)?;
// The header is uncompressed
let header_len = METADATA_HEADER.len();
debug!("checking {} bytes of metadata-version stamp", header_len);
let header = &buf[..cmp::min(header_len, buf.len())];
if header != METADATA_HEADER {
return Err(format!("incompatible metadata version found: '{}'",
filename.display()));
}
// Header is okay -> inflate the actual metadata
let compressed_bytes = &buf[header_len..];
debug!("inflating {} bytes of compressed metadata", compressed_bytes.len());
let mut inflated = Vec::new();
match DeflateDecoder::new(compressed_bytes).read_to_end(&mut inflated) {
Ok(_) => {
let buf = unsafe { OwningRef::new_assert_stable_address(inflated) };
rustc_erase_owner!(buf.map_owner_box())
}
Err(_) => {
return Err(format!("failed to decompress metadata: {}", filename.display()));
}
}
}
CrateFlavor::Rmeta => {
let buf = fs::read(filename).map_err(|_|
format!("failed to read rmeta metadata: '{}'", filename.display()))?;
rustc_erase_owner!(OwningRef::new(buf).map_owner_box())
}
};
let blob = MetadataBlob(raw_bytes);
if blob.is_compatible() {
Ok(blob)
} else {
Err(format!("incompatible metadata version found: '{}'", filename.display()))
}
}
// A diagnostic function for dumping crate metadata to an output stream
pub fn list_file_metadata(target: &Target,
path: &Path,
loader: &dyn MetadataLoader,
out: &mut dyn io::Write)
-> io::Result<()> {
let filename = path.file_name().unwrap().to_str().unwrap();
let flavor = if filename.ends_with(".rlib") {
CrateFlavor::Rlib
} else if filename.ends_with(".rmeta") {
CrateFlavor::Rmeta
} else {
CrateFlavor::Dylib
};
match get_metadata_section(target, flavor, path, loader) {
Ok(metadata) => metadata.list_crate_metadata(out),
Err(msg) => write!(out, "{}\n", msg),
}
}