-
Notifications
You must be signed in to change notification settings - Fork 12.8k
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Improve
isqrt
tests and add benchmarks
* Choose test inputs more thoroughly and systematically. * Check that `isqrt` and `checked_isqrt` have equivalent results for signed types, either equivalent numerically or equivalent as a panic and a `None`. * Check that `isqrt` has numerically-equivalent results for unsigned types and their `NonZero` counterparts. * Reuse `ilog10` benchmarks, plus benchmarks that use a uniform distribution.
- Loading branch information
Showing
6 changed files
with
313 additions
and
32 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,62 @@ | ||
use rand::Rng; | ||
use test::{black_box, Bencher}; | ||
|
||
macro_rules! int_sqrt_bench { | ||
($t:ty, $predictable:ident, $random:ident, $random_small:ident, $random_uniform:ident) => { | ||
#[bench] | ||
fn $predictable(bench: &mut Bencher) { | ||
bench.iter(|| { | ||
for n in 0..(<$t>::BITS / 8) { | ||
for i in 1..=(100 as $t) { | ||
let x = black_box(i << (n * 8)); | ||
black_box(x.isqrt()); | ||
} | ||
} | ||
}); | ||
} | ||
|
||
#[bench] | ||
fn $random(bench: &mut Bencher) { | ||
let mut rng = crate::bench_rng(); | ||
/* Exponentially distributed random numbers from the whole range of the type. */ | ||
let numbers: Vec<$t> = | ||
(0..256).map(|_| rng.gen::<$t>() >> rng.gen_range(0..<$t>::BITS)).collect(); | ||
bench.iter(|| { | ||
for x in &numbers { | ||
black_box(black_box(x).isqrt()); | ||
} | ||
}); | ||
} | ||
|
||
#[bench] | ||
fn $random_small(bench: &mut Bencher) { | ||
let mut rng = crate::bench_rng(); | ||
/* Exponentially distributed random numbers from the range 0..256. */ | ||
let numbers: Vec<$t> = | ||
(0..256).map(|_| (rng.gen::<u8>() >> rng.gen_range(0..u8::BITS)) as $t).collect(); | ||
bench.iter(|| { | ||
for x in &numbers { | ||
black_box(black_box(x).isqrt()); | ||
} | ||
}); | ||
} | ||
|
||
#[bench] | ||
fn $random_uniform(bench: &mut Bencher) { | ||
let mut rng = crate::bench_rng(); | ||
/* Exponentially distributed random numbers from the whole range of the type. */ | ||
let numbers: Vec<$t> = (0..256).map(|_| rng.gen::<$t>()).collect(); | ||
bench.iter(|| { | ||
for x in &numbers { | ||
black_box(black_box(x).isqrt()); | ||
} | ||
}); | ||
} | ||
}; | ||
} | ||
|
||
int_sqrt_bench! {u8, u8_sqrt_predictable, u8_sqrt_random, u8_sqrt_random_small, u8_sqrt_uniform} | ||
int_sqrt_bench! {u16, u16_sqrt_predictable, u16_sqrt_random, u16_sqrt_random_small, u16_sqrt_uniform} | ||
int_sqrt_bench! {u32, u32_sqrt_predictable, u32_sqrt_random, u32_sqrt_random_small, u32_sqrt_uniform} | ||
int_sqrt_bench! {u64, u64_sqrt_predictable, u64_sqrt_random, u64_sqrt_random_small, u64_sqrt_uniform} | ||
int_sqrt_bench! {u128, u128_sqrt_predictable, u128_sqrt_random, u128_sqrt_random_small, u128_sqrt_uniform} |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
|
@@ -2,6 +2,7 @@ mod dec2flt; | |
mod flt2dec; | ||
mod int_log; | ||
mod int_pow; | ||
mod int_sqrt; | ||
|
||
use std::str::FromStr; | ||
|
||
|
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,248 @@ | ||
macro_rules! tests { | ||
($isqrt_consistency_check_fn_macro:ident : $($T:ident)+) => { | ||
$( | ||
mod $T { | ||
$isqrt_consistency_check_fn_macro!($T); | ||
|
||
// Check that the following produce the correct values from | ||
// `isqrt`: | ||
// | ||
// * the first and last 128 nonnegative values | ||
// * powers of two, minus one | ||
// * powers of two | ||
// | ||
// For signed types, check that `checked_isqrt` and `isqrt` | ||
// either produce the same numeric value or respectively | ||
// produce `None` and a panic. Make sure to do a consistency | ||
// check for `<$T>::MIN` as well, as no nonnegative values | ||
// negate to it. | ||
// | ||
// For unsigned types check that `isqrt` produces the same | ||
// numeric value for `$T` and `NonZero<$T>`. | ||
#[test] | ||
fn isqrt() { | ||
isqrt_consistency_check(<$T>::MIN); | ||
|
||
for n in (0..=127) | ||
.chain(<$T>::MAX - 127..=<$T>::MAX) | ||
.chain((0..<$T>::MAX.count_ones()).map(|exponent| (1 << exponent) - 1)) | ||
.chain((0..<$T>::MAX.count_ones()).map(|exponent| 1 << exponent)) | ||
{ | ||
isqrt_consistency_check(n); | ||
|
||
let isqrt_n = n.isqrt(); | ||
assert!( | ||
isqrt_n | ||
.checked_mul(isqrt_n) | ||
.map(|isqrt_n_squared| isqrt_n_squared <= n) | ||
.unwrap_or(false), | ||
"`{n}.isqrt()` should be lower than {isqrt_n}." | ||
); | ||
assert!( | ||
(isqrt_n + 1) | ||
.checked_mul(isqrt_n + 1) | ||
.map(|isqrt_n_plus_1_squared| n < isqrt_n_plus_1_squared) | ||
.unwrap_or(true), | ||
"`{n}.isqrt()` should be higher than {isqrt_n})." | ||
); | ||
} | ||
} | ||
|
||
// Check the square roots of: | ||
// | ||
// * the first 1,024 perfect squares | ||
// * halfway between each of the first 1,024 perfect squares | ||
// and the next perfect square | ||
// * the next perfect square after the each of the first 1,024 | ||
// perfect squares, minus one | ||
// * the last 1,024 perfect squares | ||
// * the last 1,024 perfect squares, minus one | ||
// * halfway between each of the last 1,024 perfect squares | ||
// and the previous perfect square | ||
#[test] | ||
// Skip this test on Miri, as it takes too long to run. | ||
#[cfg(not(miri))] | ||
fn isqrt_extended() { | ||
// The correct value is worked out by using the fact that | ||
// the nth nonzero perfect square is the sum of the first n | ||
// odd numbers: | ||
// | ||
// 1 = 1 | ||
// 4 = 1 + 3 | ||
// 9 = 1 + 3 + 5 | ||
// 16 = 1 + 3 + 5 + 7 | ||
// | ||
// Note also that the last odd number added in is two times | ||
// the square root of the previous perfect square, plus | ||
// one: | ||
// | ||
// 1 = 2*0 + 1 | ||
// 3 = 2*1 + 1 | ||
// 5 = 2*2 + 1 | ||
// 7 = 2*3 + 1 | ||
// | ||
// That means we can add the square root of this perfect | ||
// square once to get about halfway to the next perfect | ||
// square, then we can add the square root of this perfect | ||
// square again to get to the next perfect square, minus | ||
// one, then we can add one to get to the next perfect | ||
// square. | ||
// | ||
// This allows us to, for each of the first 1,024 perfect | ||
// squares, test that the square roots of the following are | ||
// all correct and equal to each other: | ||
// | ||
// * the current perfect square | ||
// * about halfway to the next perfect square | ||
// * the next perfect square, minus one | ||
let mut n: $T = 0; | ||
for sqrt_n in 0..1_024.min((1_u128 << (<$T>::MAX.count_ones()/2)) - 1) as $T { | ||
isqrt_consistency_check(n); | ||
assert_eq!( | ||
n.isqrt(), | ||
sqrt_n, | ||
"`{sqrt_n}.pow(2).isqrt()` should be {sqrt_n}." | ||
); | ||
|
||
n += sqrt_n; | ||
isqrt_consistency_check(n); | ||
assert_eq!( | ||
n.isqrt(), | ||
sqrt_n, | ||
"{n} is about halfway between `{sqrt_n}.pow(2)` and `{}.pow(2)`, so `{n}.isqrt()` should be {sqrt_n}.", | ||
sqrt_n + 1 | ||
); | ||
|
||
n += sqrt_n; | ||
isqrt_consistency_check(n); | ||
assert_eq!( | ||
n.isqrt(), | ||
sqrt_n, | ||
"`({}.pow(2) - 1).isqrt()` should be {sqrt_n}.", | ||
sqrt_n + 1 | ||
); | ||
|
||
n += 1; | ||
} | ||
|
||
// Similarly, for each of the last 1,024 perfect squares, | ||
// check: | ||
// | ||
// * the current perfect square | ||
// * the current perfect square, minus one | ||
// * about halfway to the previous perfect square | ||
// | ||
// `MAX`'s `isqrt` return value is verified in the `isqrt` | ||
// test function above. | ||
let maximum_sqrt = <$T>::MAX.isqrt(); | ||
let mut n = maximum_sqrt * maximum_sqrt; | ||
|
||
for sqrt_n in (maximum_sqrt - 1_024.min((1_u128 << (<$T>::MAX.count_ones()/2)) - 1) as $T..maximum_sqrt).rev() { | ||
isqrt_consistency_check(n); | ||
assert_eq!( | ||
n.isqrt(), | ||
sqrt_n + 1, | ||
"`{0}.pow(2).isqrt()` should be {0}.", | ||
sqrt_n + 1 | ||
); | ||
|
||
n -= 1; | ||
isqrt_consistency_check(n); | ||
assert_eq!( | ||
n.isqrt(), | ||
sqrt_n, | ||
"`({}.pow(2) - 1).isqrt()` should be {sqrt_n}.", | ||
sqrt_n + 1 | ||
); | ||
|
||
n -= sqrt_n; | ||
isqrt_consistency_check(n); | ||
assert_eq!( | ||
n.isqrt(), | ||
sqrt_n, | ||
"{n} is about halfway between `{sqrt_n}.pow(2)` and `{}.pow(2)`, so `{n}.isqrt()` should be {sqrt_n}.", | ||
sqrt_n + 1 | ||
); | ||
|
||
n -= sqrt_n; | ||
} | ||
} | ||
} | ||
)* | ||
}; | ||
} | ||
|
||
macro_rules! signed_check { | ||
($T:ident) => { | ||
/// This takes an input and, if it's nonnegative or | ||
#[doc = concat!("`", stringify!($T), "::MIN`,")] | ||
/// checks that `isqrt` and `checked_isqrt` produce equivalent results | ||
/// for that input and for the negative of that input. | ||
/// | ||
/// # Note | ||
/// | ||
/// This cannot check that negative inputs to `isqrt` cause panics if | ||
/// panics abort instead of unwind. | ||
fn isqrt_consistency_check(n: $T) { | ||
// `<$T>::MIN` will be negative, so ignore it in this nonnegative | ||
// section. | ||
if n >= 0 { | ||
assert_eq!( | ||
Some(n.isqrt()), | ||
n.checked_isqrt(), | ||
"`{n}.checked_isqrt()` should match `Some({n}.isqrt())`.", | ||
); | ||
} | ||
|
||
// `wrapping_neg` so that `<$T>::MIN` will negate to itself rather | ||
// than panicking. | ||
let negative_n = n.wrapping_neg(); | ||
|
||
// Zero negated will still be nonnegative, so ignore it in this | ||
// negative section. | ||
if negative_n < 0 { | ||
assert_eq!( | ||
negative_n.checked_isqrt(), | ||
None, | ||
"`({negative_n}).checked_isqrt()` should be `None`, as {negative_n} is negative.", | ||
); | ||
|
||
// `catch_unwind` only works when panics unwind rather than abort. | ||
#[cfg(panic = "unwind")] | ||
{ | ||
std::panic::catch_unwind(core::panic::AssertUnwindSafe(|| (-n).isqrt())).expect_err( | ||
&format!("`({negative_n}).isqrt()` should have panicked, as {negative_n} is negative.") | ||
); | ||
} | ||
} | ||
} | ||
}; | ||
} | ||
|
||
macro_rules! unsigned_check { | ||
($T:ident) => { | ||
/// This takes an input and, if it's nonzero, checks that `isqrt` | ||
/// produces the same numeric value for both | ||
#[doc = concat!("`", stringify!($T), "` and ")] | ||
#[doc = concat!("`NonZero<", stringify!($T), ">`.")] | ||
fn isqrt_consistency_check(n: $T) { | ||
// Zero cannot be turned into a `NonZero` value, so ignore it in | ||
// this nonzero section. | ||
if n > 0 { | ||
assert_eq!( | ||
n.isqrt(), | ||
core::num::NonZero::<$T>::new(n) | ||
.expect( | ||
"Was not able to create a new `NonZero` value from a nonzero number." | ||
) | ||
.isqrt() | ||
.get(), | ||
"`{n}.isqrt` should match `NonZero`'s `{n}.isqrt().get()`.", | ||
); | ||
} | ||
} | ||
}; | ||
} | ||
|
||
tests!(signed_check: i8 i16 i32 i64 i128); | ||
tests!(unsigned_check: u8 u16 u32 u64 u128); |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
|
@@ -27,6 +27,7 @@ mod const_from; | |
mod dec2flt; | ||
mod flt2dec; | ||
mod int_log; | ||
mod int_sqrt; | ||
mod ops; | ||
mod wrapping; | ||
|
||
|