-
Notifications
You must be signed in to change notification settings - Fork 46
/
lib.rs
459 lines (393 loc) · 16.5 KB
/
lib.rs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
//! A speedy, non-cryptographic hashing algorithm used by `rustc`.
//!
//! # Example
//!
//! ```rust
//! # #[cfg(feature = "std")]
//! # fn main() {
//! use rustc_hash::FxHashMap;
//!
//! let mut map: FxHashMap<u32, u32> = FxHashMap::default();
//! map.insert(22, 44);
//! # }
//! # #[cfg(not(feature = "std"))]
//! # fn main() { }
//! ```
#![no_std]
#![cfg_attr(feature = "nightly", feature(hasher_prefixfree_extras))]
#[cfg(feature = "std")]
extern crate std;
#[cfg(feature = "rand")]
extern crate rand;
#[cfg(feature = "rand")]
mod random_state;
mod seeded_state;
use core::default::Default;
use core::hash::{BuildHasher, Hasher};
#[cfg(feature = "std")]
use std::collections::{HashMap, HashSet};
/// Type alias for a hash map that uses the Fx hashing algorithm.
#[cfg(feature = "std")]
pub type FxHashMap<K, V> = HashMap<K, V, FxBuildHasher>;
/// Type alias for a hash set that uses the Fx hashing algorithm.
#[cfg(feature = "std")]
pub type FxHashSet<V> = HashSet<V, FxBuildHasher>;
#[cfg(feature = "rand")]
pub use random_state::{FxHashMapRand, FxHashSetRand, FxRandomState};
pub use seeded_state::FxSeededState;
#[cfg(feature = "std")]
pub use seeded_state::{FxHashMapSeed, FxHashSetSeed};
/// A speedy hash algorithm for use within rustc. The hashmap in liballoc
/// by default uses SipHash which isn't quite as speedy as we want. In the
/// compiler we're not really worried about DOS attempts, so we use a fast
/// non-cryptographic hash.
///
/// The current implementation is a fast polynomial hash with a single
/// bit rotation as a finishing step designed by Orson Peters.
#[derive(Clone)]
pub struct FxHasher {
hash: usize,
}
// One might view a polynomial hash
// m[0] * k + m[1] * k^2 + m[2] * k^3 + ...
// as a multilinear hash with keystream k[..]
// m[0] * k[0] + m[1] * k[1] + m[2] * k[2] + ...
// where keystream k just happens to be generated using a multiplicative
// congruential pseudorandom number generator (MCG). For that reason we chose a
// constant that was found to be good for a MCG in:
// "Computationally Easy, Spectrally Good Multipliers for Congruential
// Pseudorandom Number Generators" by Guy Steele and Sebastiano Vigna.
#[cfg(target_pointer_width = "64")]
const K: usize = 0xf1357aea2e62a9c5;
#[cfg(target_pointer_width = "32")]
const K: usize = 0x93d765dd;
impl FxHasher {
/// Creates a `fx` hasher with a given seed.
pub const fn with_seed(seed: usize) -> FxHasher {
FxHasher { hash: seed }
}
/// Creates a default `fx` hasher.
pub const fn default() -> FxHasher {
FxHasher { hash: 0 }
}
}
impl Default for FxHasher {
#[inline]
fn default() -> FxHasher {
Self::default()
}
}
impl FxHasher {
#[inline]
fn add_to_hash(&mut self, i: usize) {
self.hash = self.hash.wrapping_add(i).wrapping_mul(K);
}
}
impl Hasher for FxHasher {
#[inline]
fn write(&mut self, bytes: &[u8]) {
// Compress the byte string to a single u64 and add to our hash.
self.write_u64(hash_bytes(bytes));
}
#[inline]
fn write_u8(&mut self, i: u8) {
self.add_to_hash(i as usize);
}
#[inline]
fn write_u16(&mut self, i: u16) {
self.add_to_hash(i as usize);
}
#[inline]
fn write_u32(&mut self, i: u32) {
self.add_to_hash(i as usize);
}
#[inline]
fn write_u64(&mut self, i: u64) {
self.add_to_hash(i as usize);
#[cfg(target_pointer_width = "32")]
self.add_to_hash((i >> 32) as usize);
}
#[inline]
fn write_u128(&mut self, i: u128) {
self.add_to_hash(i as usize);
#[cfg(target_pointer_width = "32")]
self.add_to_hash((i >> 32) as usize);
self.add_to_hash((i >> 64) as usize);
#[cfg(target_pointer_width = "32")]
self.add_to_hash((i >> 96) as usize);
}
#[inline]
fn write_usize(&mut self, i: usize) {
self.add_to_hash(i);
}
#[cfg(feature = "nightly")]
#[inline]
fn write_length_prefix(&mut self, _len: usize) {
// Most cases will specialize hash_slice to call write(), which encodes
// the length already in a more efficient manner than we could here. For
// HashDoS-resistance you would still need to include this for the
// non-slice collection hashes, but for the purposes of rustc we do not
// care and do not wish to pay the performance penalty of mixing in len
// for those collections.
}
#[cfg(feature = "nightly")]
#[inline]
fn write_str(&mut self, s: &str) {
// Similarly here, write already encodes the length, so nothing special
// is needed.
self.write(s.as_bytes())
}
#[inline]
fn finish(&self) -> u64 {
// Since we used a multiplicative hash our top bits have the most
// entropy (with the top bit having the most, decreasing as you go).
// As most hash table implementations (including hashbrown) compute
// the bucket index from the bottom bits we want to move bits from the
// top to the bottom. Ideally we'd rotate left by exactly the hash table
// size, but as we don't know this we'll choose 20 bits, giving decent
// entropy up until 2^20 table sizes. On 32-bit hosts we'll dial it
// back down a bit to 15 bits.
#[cfg(target_pointer_width = "64")]
const ROTATE: u32 = 20;
#[cfg(target_pointer_width = "32")]
const ROTATE: u32 = 15;
self.hash.rotate_left(ROTATE) as u64
// A bit reversal would be even better, except hashbrown also expects
// good entropy in the top 7 bits and a bit reverse would fill those
// bits with low entropy. More importantly, bit reversals are very slow
// on x86-64. A byte reversal is relatively fast, but still has a 2
// cycle latency on x86-64 compared to the 1 cycle latency of a rotate.
// It also suffers from the hashbrown-top-7-bit-issue.
}
}
// Nothing special, digits of pi.
const SEED1: u64 = 0x243f6a8885a308d3;
const SEED2: u64 = 0x13198a2e03707344;
const PREVENT_TRIVIAL_ZERO_COLLAPSE: u64 = 0xa4093822299f31d0;
#[inline]
fn multiply_mix(x: u64, y: u64) -> u64 {
#[cfg(target_pointer_width = "64")]
{
// We compute the full u64 x u64 -> u128 product, this is a single mul
// instruction on x86-64, one mul plus one mulhi on ARM64.
let full = (x as u128) * (y as u128);
let lo = full as u64;
let hi = (full >> 64) as u64;
// The middle bits of the full product fluctuate the most with small
// changes in the input. This is the top bits of lo and the bottom bits
// of hi. We can thus make the entire output fluctuate with small
// changes to the input by XOR'ing these two halves.
lo ^ hi
// Unfortunately both 2^64 + 1 and 2^64 - 1 have small prime factors,
// otherwise combining with + or - could result in a really strong hash, as:
// x * y = 2^64 * hi + lo = (-1) * hi + lo = lo - hi, (mod 2^64 + 1)
// x * y = 2^64 * hi + lo = 1 * hi + lo = lo + hi, (mod 2^64 - 1)
// Multiplicative hashing is universal in a field (like mod p).
}
#[cfg(target_pointer_width = "32")]
{
// u64 x u64 -> u128 product is prohibitively expensive on 32-bit.
// Decompose into 32-bit parts.
let lx = x as u32;
let ly = y as u32;
let hx = (x >> 32) as u32;
let hy = (y >> 32) as u32;
// u32 x u32 -> u64 the low bits of one with the high bits of the other.
let afull = (lx as u64) * (hy as u64);
let bfull = (hx as u64) * (ly as u64);
// Combine, swapping low/high of one of them so the upper bits of the
// product of one combine with the lower bits of the other.
afull ^ bfull.rotate_right(32)
}
}
/// A wyhash-inspired non-collision-resistant hash for strings/slices designed
/// by Orson Peters, with a focus on small strings and small codesize.
///
/// The 64-bit version of this hash passes the SMHasher3 test suite on the full
/// 64-bit output, that is, f(hash_bytes(b) ^ f(seed)) for some good avalanching
/// permutation f() passed all tests with zero failures. When using the 32-bit
/// version of multiply_mix this hash has a few non-catastrophic failures where
/// there are a handful more collisions than an optimal hash would give.
///
/// We don't bother avalanching here as we'll feed this hash into a
/// multiplication after which we take the high bits, which avalanches for us.
#[inline]
fn hash_bytes(bytes: &[u8]) -> u64 {
let len = bytes.len();
let mut s0 = SEED1;
let mut s1 = SEED2;
if len <= 16 {
// XOR the input into s0, s1.
if len >= 8 {
s0 ^= u64::from_le_bytes(bytes[0..8].try_into().unwrap());
s1 ^= u64::from_le_bytes(bytes[len - 8..].try_into().unwrap());
} else if len >= 4 {
s0 ^= u32::from_le_bytes(bytes[0..4].try_into().unwrap()) as u64;
s1 ^= u32::from_le_bytes(bytes[len - 4..].try_into().unwrap()) as u64;
} else if len > 0 {
let lo = bytes[0];
let mid = bytes[len / 2];
let hi = bytes[len - 1];
s0 ^= lo as u64;
s1 ^= ((hi as u64) << 8) | mid as u64;
}
} else {
// Handle bulk (can partially overlap with suffix).
let mut off = 0;
while off < len - 16 {
let x = u64::from_le_bytes(bytes[off..off + 8].try_into().unwrap());
let y = u64::from_le_bytes(bytes[off + 8..off + 16].try_into().unwrap());
// Replace s1 with a mix of s0, x, and y, and s0 with s1.
// This ensures the compiler can unroll this loop into two
// independent streams, one operating on s0, the other on s1.
//
// Since zeroes are a common input we prevent an immediate trivial
// collapse of the hash function by XOR'ing a constant with y.
let t = multiply_mix(s0 ^ x, PREVENT_TRIVIAL_ZERO_COLLAPSE ^ y);
s0 = s1;
s1 = t;
off += 16;
}
let suffix = &bytes[len - 16..];
s0 ^= u64::from_le_bytes(suffix[0..8].try_into().unwrap());
s1 ^= u64::from_le_bytes(suffix[8..16].try_into().unwrap());
}
multiply_mix(s0, s1) ^ (len as u64)
}
/// An implementation of [`BuildHasher`] that produces [`FxHasher`]s.
///
/// ```
/// use std::hash::BuildHasher;
/// use rustc_hash::FxBuildHasher;
/// assert_ne!(FxBuildHasher.hash_one(1), FxBuildHasher.hash_one(2));
/// ```
#[derive(Copy, Clone, Default)]
pub struct FxBuildHasher;
impl BuildHasher for FxBuildHasher {
type Hasher = FxHasher;
fn build_hasher(&self) -> FxHasher {
FxHasher::default()
}
}
#[cfg(test)]
mod tests {
#[cfg(not(any(target_pointer_width = "64", target_pointer_width = "32")))]
compile_error!("The test suite only supports 64 bit and 32 bit usize");
use crate::{FxBuildHasher, FxHasher};
use core::hash::{BuildHasher, Hash, Hasher};
macro_rules! test_hash {
(
$(
hash($value:expr) == $result:expr,
)*
) => {
$(
assert_eq!(FxBuildHasher.hash_one($value), $result);
)*
};
}
const B32: bool = cfg!(target_pointer_width = "32");
#[test]
fn unsigned() {
test_hash! {
hash(0_u8) == 0,
hash(1_u8) == if B32 { 3001993707 } else { 12583873379513078615 },
hash(100_u8) == if B32 { 3844759569 } else { 4008740938959785536 },
hash(u8::MAX) == if B32 { 999399879 } else { 17600987023830959190 },
hash(0_u16) == 0,
hash(1_u16) == if B32 { 3001993707 } else { 12583873379513078615 },
hash(100_u16) == if B32 { 3844759569 } else { 4008740938959785536 },
hash(u16::MAX) == if B32 { 3440503042 } else { 4001367065645062987 },
hash(0_u32) == 0,
hash(1_u32) == if B32 { 3001993707 } else { 12583873379513078615 },
hash(100_u32) == if B32 { 3844759569 } else { 4008740938959785536 },
hash(u32::MAX) == if B32 { 1293006356 } else { 17126373362251322066 },
hash(0_u64) == 0,
hash(1_u64) == if B32 { 275023839 } else { 12583873379513078615 },
hash(100_u64) == if B32 { 1732383522 } else { 4008740938959785536 },
hash(u64::MAX) == if B32 { 1017982517 } else { 5862870694197521576 },
hash(0_u128) == 0,
hash(1_u128) == if B32 { 1860738631 } else { 12885773367358079611 },
hash(100_u128) == if B32 { 1389515751 } else { 15751995649841559633 },
hash(u128::MAX) == if B32 { 2156022013 } else { 11423841400550042156 },
hash(0_usize) == 0,
hash(1_usize) == if B32 { 3001993707 } else { 12583873379513078615 },
hash(100_usize) == if B32 { 3844759569 } else { 4008740938959785536 },
hash(usize::MAX) == if B32 { 1293006356 } else { 5862870694197521576 },
}
}
#[test]
fn signed() {
test_hash! {
hash(i8::MIN) == if B32 { 2000713177 } else { 5869058164817243095 },
hash(0_i8) == 0,
hash(1_i8) == if B32 { 3001993707 } else { 12583873379513078615 },
hash(100_i8) == if B32 { 3844759569 } else { 4008740938959785536 },
hash(i8::MAX) == if B32 { 3293686765 } else { 11731928859014764671 },
hash(i16::MIN) == if B32 { 1073764727 } else { 8292620222579070801 },
hash(0_i16) == 0,
hash(1_i16) == if B32 { 3001993707 } else { 12583873379513078615 },
hash(100_i16) == if B32 { 3844759569 } else { 4008740938959785536 },
hash(i16::MAX) == if B32 { 2366738315 } else { 14155490916776592377 },
hash(i32::MIN) == if B32 { 16384 } else { 5631751334026900245 },
hash(0_i32) == 0,
hash(1_i32) == if B32 { 3001993707 } else { 12583873379513078615 },
hash(100_i32) == if B32 { 3844759569 } else { 4008740938959785536 },
hash(i32::MAX) == if B32 { 1293022740 } else { 11494622028224421821 },
hash(i64::MIN) == if B32 { 16384 } else { 524288 },
hash(0_i64) == 0,
hash(1_i64) == if B32 { 275023839 } else { 12583873379513078615 },
hash(100_i64) == if B32 { 1732383522 } else { 4008740938959785536 },
hash(i64::MAX) == if B32 { 1017998901 } else { 5862870694198045864 },
hash(i128::MIN) == if B32 { 16384 } else { 524288 },
hash(0_i128) == 0,
hash(1_i128) == if B32 { 1860738631 } else { 12885773367358079611 },
hash(100_i128) == if B32 { 1389515751 } else { 15751995649841559633 },
hash(i128::MAX) == if B32 { 2156005629 } else { 11423841400549517868 },
hash(isize::MIN) == if B32 { 16384 } else { 524288 },
hash(0_isize) == 0,
hash(1_isize) == if B32 { 3001993707 } else { 12583873379513078615 },
hash(100_isize) == if B32 { 3844759569 } else { 4008740938959785536 },
hash(isize::MAX) == if B32 { 1293022740 } else { 5862870694198045864 },
}
}
// Avoid relying on any `Hash` implementations in the standard library.
struct HashBytes(&'static [u8]);
impl Hash for HashBytes {
fn hash<H: core::hash::Hasher>(&self, state: &mut H) {
state.write(self.0);
}
}
#[test]
fn bytes() {
test_hash! {
hash(HashBytes(&[])) == if B32 { 2673204745 } else { 5175017818631658678 },
hash(HashBytes(&[0])) == if B32 { 2948228584 } else { 11037888512829180254 },
hash(HashBytes(&[0, 0, 0, 0, 0, 0])) == if B32 { 3223252423 } else { 6891281800865632452 },
hash(HashBytes(&[1])) == if B32 { 2943445104 } else { 4127763515449136980 },
hash(HashBytes(&[2])) == if B32 { 1055423297 } else { 11322700005987241762 },
hash(HashBytes(b"uwu")) == if B32 { 2699662140 } else { 2129615206728903013 },
hash(HashBytes(b"These are some bytes for testing rustc_hash.")) == if B32 { 2303640537 } else { 5513083560975408889 },
}
}
#[test]
fn with_seed_actually_different() {
let seeds = [
[1, 2],
[42, 17],
[124436707, 99237],
[usize::MIN, usize::MAX],
];
for [a_seed, b_seed] in seeds {
let a = || FxHasher::with_seed(a_seed);
let b = || FxHasher::with_seed(b_seed);
for x in u8::MIN..=u8::MAX {
let mut a = a();
let mut b = b();
x.hash(&mut a);
x.hash(&mut b);
assert_ne!(a.finish(), b.finish())
}
}
}
}