Skip to content

Latest commit

 

History

History
42 lines (30 loc) · 1.36 KB

README.md

File metadata and controls

42 lines (30 loc) · 1.36 KB

Hierarchical Inter-Message Passing for Learning on Molecular Graphs


This is a PyTorch implementation of Hierarchical Inter-Message Passing for Learning on Molecular Graphs, as described in our paper:

Matthias Fey, Jan-Gin Yuen, Frank Weichert: Hierarchical Inter-Message Passing for Learning on Molecular Graphs (GRL+ 2020)

Requirements

Experiments

Experiments can be run via:

$ python train_zinc_subset.py
$ python train_zinc_full.py
$ python train_hiv.py
$ python train_muv.py
$ python train_tox21.py
$ python train_ogbhiv.py
$ python train_ogbpcba.py

Cite

Please cite our paper if you use this code in your own work:

@inproceedings{Fey/etal/2020,
  title={Hierarchical Inter-Message Passing for Learning on Molecular Graphs},
  author={Fey, M. and Yuen, J. G. and Weichert, F.},
  booktitle={ICML Graph Representation Learning and Beyond (GRL+) Workhop},
  year={2020},
}