-
Notifications
You must be signed in to change notification settings - Fork 22
/
Least_Square_Regression_Line.java
59 lines (51 loc) · 1.72 KB
/
Least_Square_Regression_Line.java
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
import java.util.Scanner;
public class Solution {
public static void main(String[] args) {
/* Hardcoded data */
int [] x = {95, 85, 80, 70, 60};
int [] y = {85, 95, 70, 65, 70};
double studentScore = 80;
/* Get coefficients for Least Square Regression Line */
double b = pearson(x, y) * (standardDeviation(y) / standardDeviation(x));
double a = getMean(y) - b * getMean(x);
/* Calculate and print predicted score */
double result = a + b * studentScore;
System.out.format("%.3f", result);
}
/* Calculates Pearson coefficient */
private static Double pearson(int [] xs, int [] ys) {
if (xs == null || ys == null || xs.length != ys.length) {
return null;
}
double xMean = getMean(xs);
double yMean = getMean(xs);
int n = xs.length;
double numerator = 0;
for (int i = 0; i < n; i++) {
numerator += (xs[i] - xMean) * (ys[i] - yMean);
}
return numerator / (n * standardDeviation(xs) * standardDeviation(ys));
}
private static Double getMean(int [] array) {
if (array == null) {
return null;
}
int total = 0;
for (int num : array) {
total += num;
}
return (double) total / array.length;
}
private static Double standardDeviation(int [] array) {
if (array == null) {
return null;
}
double mean = getMean(array);
int sum = 0;
for (double x : array) {
sum += Math.pow(x - mean, 2);
}
double variance = sum / array.length;
return Math.sqrt(variance);
}
}