-
Notifications
You must be signed in to change notification settings - Fork 22
/
Multiple_Linear_Regression.java
177 lines (154 loc) · 5.43 KB
/
Multiple_Linear_Regression.java
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
import java.util.Scanner;
import java.util.Arrays;
public class Solution {
public static void main(String[] args) {
/* Read input: Create and fill X,Y arrays */
Scanner scan = new Scanner(System.in);
int m = scan.nextInt();
int n = scan.nextInt();
double [][] X = new double[n][m + 1];
double [][] Y = new double[n][1];
for (int row = 0; row < n; row++) {
X[row][0] = 1;
for (int col = 1; col <= m; col++) {
X[row][col] = scan.nextDouble();
}
Y[row][0] = scan.nextDouble();
}
/* Calculate B */
double [][] xtx = multiply(transpose(X),X);
double [][] xtxInv = invert(xtx);
double [][] xty = multiply(transpose(X), Y);
double [][] B = multiply(xtxInv, xty);
int sizeB = B.length;
/* Calculate and print values for the "q" feature sets */
int q = scan.nextInt();
for (int i = 0; i < q; i++) {
double result = B[0][0];
for (int row = 1; row < sizeB; row++) {
result += scan.nextDouble() * B[row][0];
}
System.out.println(result);
}
scan.close();
}
/* Multiplies 2 matrices in O(n^3) time */
public static double[][] multiply(double [][] A, double [][] B) {
int aRows = A.length;
int aCols = A[0].length;
int bRows = B.length;
int bCols = B[0].length;
double [][] C = new double[aRows][bCols];
int cRows = C.length;
int cCols = C[0].length;
for (int row = 0; row < cRows; row++) {
for (int col = 0; col < cCols; col++) {
for (int k = 0; k < aCols; k++) {
C[row][col] += A[row][k] * B[k][col];
}
}
}
return C;
}
public static double[][] transpose(double [][] matrix) {
/* Create new array with switched dimensions */
int originalRows = matrix.length;
int originalCols = matrix[0].length;
int rows = originalCols;
int cols = originalRows;
double [][] result = new double[rows][cols];
/* Fill our new 2D array */
for (int row = 0; row < originalRows; row++) {
for (int col = 0; col < originalCols; col++) {
result[col][row] = matrix[row][col];
}
}
return result;
}
/******************************************************************/
/* Matrix Inversion code (the 2 functions below) are from: */
/* http://www.sanfoundry.com/java-program-find-inverse-matrix/ */
/******************************************************************/
public static double[][] invert(double a[][])
{
int n = a.length;
double x[][] = new double[n][n];
double b[][] = new double[n][n];
int index[] = new int[n];
for (int i=0; i<n; ++i)
b[i][i] = 1;
// Transform the matrix into an upper triangle
gaussian(a, index);
// Update the matrix b[i][j] with the ratios stored
for (int i=0; i<n-1; ++i)
for (int j=i+1; j<n; ++j)
for (int k=0; k<n; ++k)
b[index[j]][k]
-= a[index[j]][i]*b[index[i]][k];
// Perform backward substitutions
for (int i=0; i<n; ++i)
{
x[n-1][i] = b[index[n-1]][i]/a[index[n-1]][n-1];
for (int j=n-2; j>=0; --j)
{
x[j][i] = b[index[j]][i];
for (int k=j+1; k<n; ++k)
{
x[j][i] -= a[index[j]][k]*x[k][i];
}
x[j][i] /= a[index[j]][j];
}
}
return x;
}
// Method to carry out the partial-pivoting Gaussian
// elimination. Here index[] stores pivoting order.
public static void gaussian(double a[][], int index[])
{
int n = index.length;
double c[] = new double[n];
// Initialize the index
for (int i=0; i<n; ++i)
index[i] = i;
// Find the rescaling factors, one from each row
for (int i=0; i<n; ++i)
{
double c1 = 0;
for (int j=0; j<n; ++j)
{
double c0 = Math.abs(a[i][j]);
if (c0 > c1) c1 = c0;
}
c[i] = c1;
}
// Search the pivoting element from each column
int k = 0;
for (int j=0; j<n-1; ++j)
{
double pi1 = 0;
for (int i=j; i<n; ++i)
{
double pi0 = Math.abs(a[index[i]][j]);
pi0 /= c[index[i]];
if (pi0 > pi1)
{
pi1 = pi0;
k = i;
}
}
// Interchange rows according to the pivoting order
int itmp = index[j];
index[j] = index[k];
index[k] = itmp;
for (int i=j+1; i<n; ++i)
{
double pj = a[index[i]][j]/a[index[j]][j];
// Record pivoting ratios below the diagonal
a[index[i]][j] = pj;
// Modify other elements accordingly
for (int l=j+1; l<n; ++l)
a[index[i]][l] -= pj*a[index[j]][l];
}
}
}
}