-
-
Notifications
You must be signed in to change notification settings - Fork 4.8k
/
davit.py
816 lines (681 loc) · 27.1 KB
/
davit.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
""" DaViT: Dual Attention Vision Transformers
As described in https://arxiv.org/abs/2204.03645
Input size invariant transformer architecture that combines channel and spacial
attention in each block. The attention mechanisms used are linear in complexity.
DaViT model defs and weights adapted from https://github.com/dingmyu/davit, original copyright below
"""
# Copyright (c) 2022 Mingyu Ding
# All rights reserved.
# This source code is licensed under the MIT license
from functools import partial
from typing import Optional, Tuple
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch import Tensor
from timm.data import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD
from timm.layers import DropPath, to_2tuple, trunc_normal_, Mlp, LayerNorm2d, get_norm_layer, use_fused_attn
from timm.layers import NormMlpClassifierHead, ClassifierHead
from ._builder import build_model_with_cfg
from ._features_fx import register_notrace_function
from ._manipulate import checkpoint_seq
from ._registry import generate_default_cfgs, register_model
__all__ = ['DaVit']
class ConvPosEnc(nn.Module):
def __init__(self, dim: int, k: int = 3, act: bool = False):
super(ConvPosEnc, self).__init__()
self.proj = nn.Conv2d(
dim,
dim,
kernel_size=k,
stride=1,
padding=k // 2,
groups=dim,
)
self.act = nn.GELU() if act else nn.Identity()
def forward(self, x: Tensor):
feat = self.proj(x)
x = x + self.act(feat)
return x
class Stem(nn.Module):
""" Size-agnostic implementation of 2D image to patch embedding,
allowing input size to be adjusted during model forward operation
"""
def __init__(
self,
in_chs=3,
out_chs=96,
stride=4,
norm_layer=LayerNorm2d,
):
super().__init__()
stride = to_2tuple(stride)
self.stride = stride
self.in_chs = in_chs
self.out_chs = out_chs
assert stride[0] == 4 # only setup for stride==4
self.conv = nn.Conv2d(
in_chs,
out_chs,
kernel_size=7,
stride=stride,
padding=3,
)
self.norm = norm_layer(out_chs)
def forward(self, x: Tensor):
B, C, H, W = x.shape
pad_r = (self.stride[1] - W % self.stride[1]) % self.stride[1]
pad_b = (self.stride[0] - H % self.stride[0]) % self.stride[0]
x = F.pad(x, (0, pad_r, 0, pad_b))
x = self.conv(x)
x = self.norm(x)
return x
class Downsample(nn.Module):
def __init__(
self,
in_chs,
out_chs,
kernel_size=3,
norm_layer=LayerNorm2d,
):
super().__init__()
self.in_chs = in_chs
self.out_chs = out_chs
self.norm = norm_layer(in_chs)
self.even_k = kernel_size % 2 == 0
self.conv = nn.Conv2d(
in_chs,
out_chs,
kernel_size=kernel_size,
stride=2,
padding=0 if self.even_k else kernel_size // 2,
)
def forward(self, x: Tensor):
B, C, H, W = x.shape
x = self.norm(x)
if self.even_k:
k_h, k_w = self.conv.kernel_size
pad_r = (k_w - W % k_w) % k_w
pad_b = (k_h - H % k_h) % k_h
x = F.pad(x, (0, pad_r , 0, pad_b))
x = self.conv(x)
return x
class ChannelAttentionV2(nn.Module):
def __init__(self, dim, num_heads=8, qkv_bias=True, dynamic_scale=True):
super().__init__()
self.groups = num_heads
self.head_dim = dim // num_heads
self.dynamic_scale = dynamic_scale
self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
self.proj = nn.Linear(dim, dim)
def forward(self, x):
B, N, C = x.shape
qkv = self.qkv(x).reshape(B, N, 3, self.groups, C // self.groups).permute(2, 0, 3, 1, 4)
q, k, v = qkv.unbind(0)
if self.dynamic_scale:
q = q * N ** -0.5
else:
q = q * self.head_dim ** -0.5
attn = q.transpose(-1, -2) @ k
attn = attn.softmax(dim=-1)
x = (attn @ v.transpose(-1, -2)).transpose(-1, -2)
x = x.transpose(1, 2).reshape(B, N, C)
x = self.proj(x)
return x
class ChannelAttention(nn.Module):
def __init__(self, dim, num_heads=8, qkv_bias=False):
super().__init__()
self.num_heads = num_heads
head_dim = dim // num_heads
self.scale = head_dim ** -0.5
self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
self.proj = nn.Linear(dim, dim)
def forward(self, x: Tensor):
B, N, C = x.shape
qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4)
q, k, v = qkv.unbind(0)
k = k * self.scale
attn = k.transpose(-1, -2) @ v
attn = attn.softmax(dim=-1)
x = (attn @ q.transpose(-1, -2)).transpose(-1, -2)
x = x.transpose(1, 2).reshape(B, N, C)
x = self.proj(x)
return x
class ChannelBlock(nn.Module):
def __init__(
self,
dim,
num_heads,
mlp_ratio=4.,
qkv_bias=False,
drop_path=0.,
act_layer=nn.GELU,
norm_layer=nn.LayerNorm,
ffn=True,
cpe_act=False,
v2=False,
):
super().__init__()
self.cpe1 = ConvPosEnc(dim=dim, k=3, act=cpe_act)
self.ffn = ffn
self.norm1 = norm_layer(dim)
attn_layer = ChannelAttentionV2 if v2 else ChannelAttention
self.attn = attn_layer(
dim,
num_heads=num_heads,
qkv_bias=qkv_bias,
)
self.drop_path1 = DropPath(drop_path) if drop_path > 0. else nn.Identity()
self.cpe2 = ConvPosEnc(dim=dim, k=3, act=cpe_act)
if self.ffn:
self.norm2 = norm_layer(dim)
self.mlp = Mlp(
in_features=dim,
hidden_features=int(dim * mlp_ratio),
act_layer=act_layer,
)
self.drop_path2 = DropPath(drop_path) if drop_path > 0. else nn.Identity()
else:
self.norm2 = None
self.mlp = None
self.drop_path2 = None
def forward(self, x: Tensor):
B, C, H, W = x.shape
x = self.cpe1(x).flatten(2).transpose(1, 2)
cur = self.norm1(x)
cur = self.attn(cur)
x = x + self.drop_path1(cur)
x = self.cpe2(x.transpose(1, 2).view(B, C, H, W))
if self.mlp is not None:
x = x.flatten(2).transpose(1, 2)
x = x + self.drop_path2(self.mlp(self.norm2(x)))
x = x.transpose(1, 2).view(B, C, H, W)
return x
def window_partition(x: Tensor, window_size: Tuple[int, int]):
"""
Args:
x: (B, H, W, C)
window_size (int): window size
Returns:
windows: (num_windows*B, window_size, window_size, C)
"""
B, H, W, C = x.shape
x = x.view(B, H // window_size[0], window_size[0], W // window_size[1], window_size[1], C)
windows = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(-1, window_size[0], window_size[1], C)
return windows
@register_notrace_function # reason: int argument is a Proxy
def window_reverse(windows: Tensor, window_size: Tuple[int, int], H: int, W: int):
"""
Args:
windows: (num_windows*B, window_size, window_size, C)
window_size (int): Window size
H (int): Height of image
W (int): Width of image
Returns:
x: (B, H, W, C)
"""
C = windows.shape[-1]
x = windows.view(-1, H // window_size[0], W // window_size[1], window_size[0], window_size[1], C)
x = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(-1, H, W, C)
return x
class WindowAttention(nn.Module):
r""" Window based multi-head self attention (W-MSA) module with relative position bias.
It supports both of shifted and non-shifted window.
Args:
dim (int): Number of input channels.
window_size (tuple[int]): The height and width of the window.
num_heads (int): Number of attention heads.
qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True
"""
fused_attn: torch.jit.Final[bool]
def __init__(self, dim, window_size, num_heads, qkv_bias=True):
super().__init__()
self.dim = dim
self.window_size = window_size
self.num_heads = num_heads
head_dim = dim // num_heads
self.scale = head_dim ** -0.5
self.fused_attn = use_fused_attn()
self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
self.proj = nn.Linear(dim, dim)
self.softmax = nn.Softmax(dim=-1)
def forward(self, x: Tensor):
B_, N, C = x.shape
qkv = self.qkv(x).reshape(B_, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4)
q, k, v = qkv.unbind(0)
if self.fused_attn:
x = F.scaled_dot_product_attention(q, k, v)
else:
q = q * self.scale
attn = (q @ k.transpose(-2, -1))
attn = self.softmax(attn)
x = attn @ v
x = x.transpose(1, 2).reshape(B_, N, C)
x = self.proj(x)
return x
class SpatialBlock(nn.Module):
r""" Windows Block.
Args:
dim (int): Number of input channels.
num_heads (int): Number of attention heads.
window_size (int): Window size.
mlp_ratio (float): Ratio of mlp hidden dim to embedding dim.
qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True
drop_path (float, optional): Stochastic depth rate. Default: 0.0
act_layer (nn.Module, optional): Activation layer. Default: nn.GELU
norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm
"""
def __init__(
self,
dim,
num_heads,
window_size=7,
mlp_ratio=4.,
qkv_bias=True,
drop_path=0.,
act_layer=nn.GELU,
norm_layer=nn.LayerNorm,
ffn=True,
cpe_act=False,
):
super().__init__()
self.dim = dim
self.ffn = ffn
self.num_heads = num_heads
self.window_size = to_2tuple(window_size)
self.mlp_ratio = mlp_ratio
self.cpe1 = ConvPosEnc(dim=dim, k=3, act=cpe_act)
self.norm1 = norm_layer(dim)
self.attn = WindowAttention(
dim,
self.window_size,
num_heads=num_heads,
qkv_bias=qkv_bias,
)
self.drop_path1 = DropPath(drop_path) if drop_path > 0. else nn.Identity()
self.cpe2 = ConvPosEnc(dim=dim, k=3, act=cpe_act)
if self.ffn:
self.norm2 = norm_layer(dim)
mlp_hidden_dim = int(dim * mlp_ratio)
self.mlp = Mlp(
in_features=dim,
hidden_features=mlp_hidden_dim,
act_layer=act_layer,
)
self.drop_path2 = DropPath(drop_path) if drop_path > 0. else nn.Identity()
else:
self.norm2 = None
self.mlp = None
self.drop_path1 = None
def forward(self, x: Tensor):
B, C, H, W = x.shape
shortcut = self.cpe1(x).flatten(2).transpose(1, 2)
x = self.norm1(shortcut)
x = x.view(B, H, W, C)
pad_l = pad_t = 0
pad_r = (self.window_size[1] - W % self.window_size[1]) % self.window_size[1]
pad_b = (self.window_size[0] - H % self.window_size[0]) % self.window_size[0]
x = F.pad(x, (0, 0, pad_l, pad_r, pad_t, pad_b))
_, Hp, Wp, _ = x.shape
x_windows = window_partition(x, self.window_size)
x_windows = x_windows.view(-1, self.window_size[0] * self.window_size[1], C)
# W-MSA/SW-MSA
attn_windows = self.attn(x_windows)
# merge windows
attn_windows = attn_windows.view(-1, self.window_size[0], self.window_size[1], C)
x = window_reverse(attn_windows, self.window_size, Hp, Wp)
# if pad_r > 0 or pad_b > 0:
x = x[:, :H, :W, :].contiguous()
x = x.view(B, H * W, C)
x = shortcut + self.drop_path1(x)
x = self.cpe2(x.transpose(1, 2).view(B, C, H, W))
if self.mlp is not None:
x = x.flatten(2).transpose(1, 2)
x = x + self.drop_path2(self.mlp(self.norm2(x)))
x = x.transpose(1, 2).view(B, C, H, W)
return x
class DaVitStage(nn.Module):
def __init__(
self,
in_chs,
out_chs,
depth=1,
downsample=True,
attn_types=('spatial', 'channel'),
num_heads=3,
window_size=7,
mlp_ratio=4.,
qkv_bias=True,
drop_path_rates=(0, 0),
norm_layer=LayerNorm2d,
norm_layer_cl=nn.LayerNorm,
ffn=True,
cpe_act=False,
down_kernel_size=2,
named_blocks=False,
channel_attn_v2=False,
):
super().__init__()
self.grad_checkpointing = False
# downsample embedding layer at the beginning of each stage
if downsample:
self.downsample = Downsample(in_chs, out_chs, kernel_size=down_kernel_size, norm_layer=norm_layer)
else:
self.downsample = nn.Identity()
'''
repeating alternating attention blocks in each stage
default: (spatial -> channel) x depth
potential opportunity to integrate with a more general version of ByobNet/ByoaNet
since the logic is similar
'''
stage_blocks = []
for block_idx in range(depth):
from collections import OrderedDict
dual_attention_block = []
for attn_idx, attn_type in enumerate(attn_types):
if attn_type == 'spatial':
dual_attention_block.append(('spatial_block', SpatialBlock(
dim=out_chs,
num_heads=num_heads,
mlp_ratio=mlp_ratio,
qkv_bias=qkv_bias,
drop_path=drop_path_rates[block_idx],
norm_layer=norm_layer_cl,
ffn=ffn,
cpe_act=cpe_act,
window_size=window_size,
)))
elif attn_type == 'channel':
dual_attention_block.append(('channel_block', ChannelBlock(
dim=out_chs,
num_heads=num_heads,
mlp_ratio=mlp_ratio,
qkv_bias=qkv_bias,
drop_path=drop_path_rates[block_idx],
norm_layer=norm_layer_cl,
ffn=ffn,
cpe_act=cpe_act,
v2=channel_attn_v2,
)))
if named_blocks:
stage_blocks.append(nn.Sequential(OrderedDict(dual_attention_block)))
else:
stage_blocks.append(nn.Sequential(*[b[1] for b in dual_attention_block]))
self.blocks = nn.Sequential(*stage_blocks)
@torch.jit.ignore
def set_grad_checkpointing(self, enable=True):
self.grad_checkpointing = enable
def forward(self, x: Tensor):
x = self.downsample(x)
if self.grad_checkpointing and not torch.jit.is_scripting():
x = checkpoint_seq(self.blocks, x)
else:
x = self.blocks(x)
return x
class DaVit(nn.Module):
r""" DaViT
A PyTorch implementation of `DaViT: Dual Attention Vision Transformers` - https://arxiv.org/abs/2204.03645
Supports arbitrary input sizes and pyramid feature extraction
Args:
in_chans (int): Number of input image channels. Default: 3
num_classes (int): Number of classes for classification head. Default: 1000
depths (tuple(int)): Number of blocks in each stage. Default: (1, 1, 3, 1)
embed_dims (tuple(int)): Patch embedding dimension. Default: (96, 192, 384, 768)
num_heads (tuple(int)): Number of attention heads in different layers. Default: (3, 6, 12, 24)
window_size (int): Window size. Default: 7
mlp_ratio (float): Ratio of mlp hidden dim to embedding dim. Default: 4
qkv_bias (bool): If True, add a learnable bias to query, key, value. Default: True
drop_path_rate (float): Stochastic depth rate. Default: 0.1
norm_layer (nn.Module): Normalization layer. Default: nn.LayerNorm.
"""
def __init__(
self,
in_chans=3,
depths=(1, 1, 3, 1),
embed_dims=(96, 192, 384, 768),
num_heads=(3, 6, 12, 24),
window_size=7,
mlp_ratio=4,
qkv_bias=True,
norm_layer='layernorm2d',
norm_layer_cl='layernorm',
norm_eps=1e-5,
attn_types=('spatial', 'channel'),
ffn=True,
cpe_act=False,
down_kernel_size=2,
channel_attn_v2=False,
named_blocks=False,
drop_rate=0.,
drop_path_rate=0.,
num_classes=1000,
global_pool='avg',
head_norm_first=False,
):
super().__init__()
num_stages = len(embed_dims)
assert num_stages == len(num_heads) == len(depths)
norm_layer = partial(get_norm_layer(norm_layer), eps=norm_eps)
norm_layer_cl = partial(get_norm_layer(norm_layer_cl), eps=norm_eps)
self.num_classes = num_classes
self.num_features = self.head_hidden_size = embed_dims[-1]
self.drop_rate = drop_rate
self.grad_checkpointing = False
self.feature_info = []
self.stem = Stem(in_chans, embed_dims[0], norm_layer=norm_layer)
in_chs = embed_dims[0]
dpr = [x.tolist() for x in torch.linspace(0, drop_path_rate, sum(depths)).split(depths)]
stages = []
for i in range(num_stages):
out_chs = embed_dims[i]
stage = DaVitStage(
in_chs,
out_chs,
depth=depths[i],
downsample=i > 0,
attn_types=attn_types,
num_heads=num_heads[i],
window_size=window_size,
mlp_ratio=mlp_ratio,
qkv_bias=qkv_bias,
drop_path_rates=dpr[i],
norm_layer=norm_layer,
norm_layer_cl=norm_layer_cl,
ffn=ffn,
cpe_act=cpe_act,
down_kernel_size=down_kernel_size,
channel_attn_v2=channel_attn_v2,
named_blocks=named_blocks,
)
in_chs = out_chs
stages.append(stage)
self.feature_info += [dict(num_chs=out_chs, reduction=2**(i+2), module=f'stages.{i}')]
self.stages = nn.Sequential(*stages)
# if head_norm_first == true, norm -> global pool -> fc ordering, like most other nets
# otherwise pool -> norm -> fc, the default DaViT order, similar to ConvNeXt
# FIXME generalize this structure to ClassifierHead
if head_norm_first:
self.norm_pre = norm_layer(self.num_features)
self.head = ClassifierHead(
self.num_features,
num_classes,
pool_type=global_pool,
drop_rate=self.drop_rate,
)
else:
self.norm_pre = nn.Identity()
self.head = NormMlpClassifierHead(
self.num_features,
num_classes,
pool_type=global_pool,
drop_rate=self.drop_rate,
norm_layer=norm_layer,
)
self.apply(self._init_weights)
def _init_weights(self, m):
if isinstance(m, nn.Linear):
trunc_normal_(m.weight, std=.02)
if isinstance(m, nn.Linear) and m.bias is not None:
nn.init.constant_(m.bias, 0)
@torch.jit.ignore
def group_matcher(self, coarse=False):
return dict(
stem=r'^stem', # stem and embed
blocks=r'^stages\.(\d+)' if coarse else [
(r'^stages\.(\d+).downsample', (0,)),
(r'^stages\.(\d+)\.blocks\.(\d+)', None),
(r'^norm_pre', (99999,)),
]
)
@torch.jit.ignore
def set_grad_checkpointing(self, enable=True):
self.grad_checkpointing = enable
for stage in self.stages:
stage.set_grad_checkpointing(enable=enable)
@torch.jit.ignore
def get_classifier(self) -> nn.Module:
return self.head.fc
def reset_classifier(self, num_classes: int, global_pool: Optional[str] = None):
self.head.reset(num_classes, global_pool)
def forward_features(self, x):
x = self.stem(x)
if self.grad_checkpointing and not torch.jit.is_scripting():
x = checkpoint_seq(self.stages, x)
else:
x = self.stages(x)
x = self.norm_pre(x)
return x
def forward_head(self, x, pre_logits: bool = False):
return self.head(x, pre_logits=True) if pre_logits else self.head(x)
def forward(self, x):
x = self.forward_features(x)
x = self.forward_head(x)
return x
def _convert_florence2(state_dict, model, prefix='vision_tower.'):
import re
out_dict = {}
for k, v in state_dict.items():
if k.startswith(prefix):
k = k.replace(prefix, '')
else:
continue
k = re.sub(r'convs.([0-9]+)', r'stages.\1.downsample', k)
k = re.sub(r'blocks.([0-9]+)', r'stages.\1.blocks', k)
k = k.replace('downsample.proj', 'downsample.conv')
k = k.replace('stages.0.downsample', 'stem')
#k = k.replace('head.', 'head.fc.')
#k = k.replace('norms.', 'head.norm.')
k = k.replace('window_attn.norm.', 'norm1.')
k = k.replace('window_attn.fn.', 'attn.')
k = k.replace('channel_attn.norm.', 'norm1.')
k = k.replace('channel_attn.fn.', 'attn.')
k = k.replace('ffn.norm.', 'norm2.')
k = k.replace('ffn.fn.net.', 'mlp.')
k = k.replace('conv1.fn.dw', 'cpe1.proj')
k = k.replace('conv2.fn.dw', 'cpe2.proj')
out_dict[k] = v
return out_dict
def checkpoint_filter_fn(state_dict, model):
""" Remap MSFT checkpoints -> timm """
if 'head.fc.weight' in state_dict:
return state_dict # non-MSFT checkpoint
if 'state_dict' in state_dict:
state_dict = state_dict['state_dict']
if 'vision_tower.convs.0.proj.weight' in state_dict:
return _convert_florence2(state_dict, model)
import re
out_dict = {}
for k, v in state_dict.items():
k = re.sub(r'patch_embeds.([0-9]+)', r'stages.\1.downsample', k)
k = re.sub(r'main_blocks.([0-9]+)', r'stages.\1.blocks', k)
k = k.replace('downsample.proj', 'downsample.conv')
k = k.replace('stages.0.downsample', 'stem')
k = k.replace('head.', 'head.fc.')
k = k.replace('norms.', 'head.norm.')
k = k.replace('cpe.0', 'cpe1')
k = k.replace('cpe.1', 'cpe2')
out_dict[k] = v
return out_dict
def _create_davit(variant, pretrained=False, **kwargs):
default_out_indices = tuple(i for i, _ in enumerate(kwargs.get('depths', (1, 1, 3, 1))))
out_indices = kwargs.pop('out_indices', default_out_indices)
strict = kwargs.pop('pretrained_strict', True)
if variant.endswith('_fl'):
# FIXME cleaner approach to missing head norm?
strict = False
model = build_model_with_cfg(
DaVit,
variant,
pretrained,
pretrained_filter_fn=checkpoint_filter_fn,
feature_cfg=dict(flatten_sequential=True, out_indices=out_indices),
pretrained_strict=strict,
**kwargs)
return model
def _cfg(url='', **kwargs):
return {
'url': url,
'num_classes': 1000, 'input_size': (3, 224, 224), 'pool_size': (7, 7),
'crop_pct': 0.95, 'interpolation': 'bicubic',
'mean': IMAGENET_DEFAULT_MEAN, 'std': IMAGENET_DEFAULT_STD,
'first_conv': 'stem.conv', 'classifier': 'head.fc',
**kwargs
}
# TODO contact authors to get larger pretrained models
default_cfgs = generate_default_cfgs({
# official microsoft weights from https://github.com/dingmyu/davit
'davit_tiny.msft_in1k': _cfg(
hf_hub_id='timm/'),
'davit_small.msft_in1k': _cfg(
hf_hub_id='timm/'),
'davit_base.msft_in1k': _cfg(
hf_hub_id='timm/'),
'davit_large': _cfg(),
'davit_huge': _cfg(),
'davit_giant': _cfg(),
'davit_base_fl.msft_florence2': _cfg(
hf_hub_id='microsoft/Florence-2-base',
num_classes=0, input_size=(3, 768, 768)),
'davit_huge_fl.msft_florence2': _cfg(
hf_hub_id='microsoft/Florence-2-large',
num_classes=0, input_size=(3, 768, 768)),
})
@register_model
def davit_tiny(pretrained=False, **kwargs) -> DaVit:
model_args = dict(depths=(1, 1, 3, 1), embed_dims=(96, 192, 384, 768), num_heads=(3, 6, 12, 24))
return _create_davit('davit_tiny', pretrained=pretrained, **dict(model_args, **kwargs))
@register_model
def davit_small(pretrained=False, **kwargs) -> DaVit:
model_args = dict(depths=(1, 1, 9, 1), embed_dims=(96, 192, 384, 768), num_heads=(3, 6, 12, 24))
return _create_davit('davit_small', pretrained=pretrained, **dict(model_args, **kwargs))
@register_model
def davit_base(pretrained=False, **kwargs) -> DaVit:
model_args = dict(depths=(1, 1, 9, 1), embed_dims=(128, 256, 512, 1024), num_heads=(4, 8, 16, 32))
return _create_davit('davit_base', pretrained=pretrained, **dict(model_args, **kwargs))
@register_model
def davit_large(pretrained=False, **kwargs) -> DaVit:
model_args = dict(depths=(1, 1, 9, 1), embed_dims=(192, 384, 768, 1536), num_heads=(6, 12, 24, 48))
return _create_davit('davit_large', pretrained=pretrained, **dict(model_args, **kwargs))
@register_model
def davit_huge(pretrained=False, **kwargs) -> DaVit:
model_args = dict(depths=(1, 1, 9, 1), embed_dims=(256, 512, 1024, 2048), num_heads=(8, 16, 32, 64))
return _create_davit('davit_huge', pretrained=pretrained, **dict(model_args, **kwargs))
@register_model
def davit_giant(pretrained=False, **kwargs) -> DaVit:
model_args = dict(depths=(1, 1, 12, 3), embed_dims=(384, 768, 1536, 3072), num_heads=(12, 24, 48, 96))
return _create_davit('davit_giant', pretrained=pretrained, **dict(model_args, **kwargs))
@register_model
def davit_base_fl(pretrained=False, **kwargs) -> DaVit:
model_args = dict(
depths=(1, 1, 9, 1), embed_dims=(128, 256, 512, 1024), num_heads=(4, 8, 16, 32),
window_size=12, down_kernel_size=3, channel_attn_v2=True, named_blocks=True,
)
return _create_davit('davit_base_fl', pretrained=pretrained, **dict(model_args, **kwargs))
@register_model
def davit_huge_fl(pretrained=False, **kwargs) -> DaVit:
# NOTE: huge image tower used in 'large' Florence2 model
model_args = dict(
depths=(1, 1, 9, 1), embed_dims=(256, 512, 1024, 2048), num_heads=(8, 16, 32, 64),
window_size=12, down_kernel_size=3, channel_attn_v2=True, named_blocks=True,
)
return _create_davit('davit_huge_fl', pretrained=pretrained, **dict(model_args, **kwargs))