-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathmain_por.py
162 lines (142 loc) · 7.13 KB
/
main_por.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
from dataclasses import dataclass
from pathlib import Path
import gym
import os
import d4rl
import sys
import numpy as np
import torch
from tqdm import trange
from por import POR
from policy import GaussianPolicy
from value_functions import TwinV
from util import return_range, set_seed, Log, sample_batch, torchify, evaluate_por
import wandb
import time
def get_env_and_dataset(env_name, max_episode_steps, normalize):
env = gym.make(env_name)
dataset = d4rl.qlearning_dataset(env)
if any(s in env_name for s in ('halfcheetah', 'hopper', 'walker2d')):
min_ret, max_ret = return_range(dataset, max_episode_steps)
print(f'Dataset returns have range [{min_ret}, {max_ret}]')
dataset['rewards'] /= (max_ret - min_ret)
dataset['rewards'] *= max_episode_steps
elif 'antmaze' in env_name:
dataset['rewards'] -= 1.
# dones = dataset["timeouts"]
print("***********************************************************************")
print(f"Normalize for the state: {normalize}")
print("***********************************************************************")
if normalize:
mean = dataset['observations'].mean(0)
std = dataset['observations'].std(0) + 1e-3
dataset['observations'] = (dataset['observations'] - mean)/std
dataset['next_observations'] = (dataset['next_observations'] - mean)/std
else:
obs_dim = dataset['observations'].shape[1]
mean, std = np.zeros(obs_dim), np.ones(obs_dim)
for k, v in dataset.items():
dataset[k] = torchify(v)
return env, dataset, mean, std
def main(args):
wandb.init(project="project_name",
entity="your_wandb_id",
name=f"{args.env_name}",
config={
"env_name": args.env_name,
"normalize": args.normalize,
"tau": args.tau,
"alpha": args.alpha,
"seed": args.seed,
"type": args.type,
"value_lr": args.value_lr,
"policy_lr": args.policy_lr,
"pretrain": args.pretrain,
})
torch.set_num_threads(1)
env, dataset, mean, std = get_env_and_dataset(args.env_name,
args.max_episode_steps,
args.normalize)
obs_dim = dataset['observations'].shape[1]
act_dim = dataset['actions'].shape[1] # this assume continuous actions
set_seed(args.seed, env=env)
policy = GaussianPolicy(obs_dim + obs_dim, act_dim, hidden_dim=1024, n_hidden=2)
goal_policy = GaussianPolicy(obs_dim, obs_dim, hidden_dim=args.hidden_dim, n_hidden=args.n_hidden)
por = POR(
vf=TwinV(obs_dim, layer_norm=args.layer_norm, hidden_dim=args.hidden_dim, n_hidden=args.n_hidden),
policy=policy,
goal_policy=goal_policy,
max_steps=args.train_steps,
tau=args.tau,
alpha=args.alpha,
discount=args.discount,
value_lr=args.value_lr,
policy_lr=args.policy_lr,
)
def eval_por(step):
eval_returns = np.array([evaluate_por(env, policy, goal_policy, mean, std) \
for _ in range(args.n_eval_episodes)])
normalized_returns = d4rl.get_normalized_score(args.env_name, eval_returns) * 100.0
wandb.log({
'return mean': eval_returns.mean(),
'normalized return mean': normalized_returns.mean(),
}, step=step)
return normalized_returns.mean()
# pretrain behavior goal policy if needed
if any(s in args.env_name for s in ('halfcheetah', 'hopper', 'walker2d')) and args.type == 'por_q':
b_goal_policy = GaussianPolicy(obs_dim, obs_dim, hidden_dim=args.hidden_dim, n_hidden=args.n_hidden)
por.pretrain_init(b_goal_policy)
if args.pretrain:
for _ in trange(args.pretrain_steps):
por.pretrain(**sample_batch(dataset, args.batch_size))
algo_name = f"pretrain_step-{args.pretrain_steps}_normalize-{args.normalize}"
os.makedirs(f"{args.model_dir}/{args.env_name}", exist_ok=True)
por.save_pretrain(f"{args.model_dir}/{args.env_name}/{algo_name}")
else:
algo_name = f"pretrain_step-{args.pretrain_steps}_normalize-{args.normalize}"
por.load_pretrain(f"{args.model_dir}/{args.env_name}/{algo_name}")
# train por
if not args.pretrain:
algo_name = f"{args.type}_tau-{args.tau}_alpha-{args.alpha}_normalize-{args.normalize}"
os.makedirs(f"{args.log_dir}/{args.env_name}/{algo_name}", exist_ok=True)
eval_log = open(f"{args.log_dir}/{args.env_name}/{algo_name}/seed-{args.seed}.txt", 'w')
for step in trange(args.train_steps):
if args.type == 'por_r': # learn V by asymmetric_l2_loss; learn g by weighted BC using the residual
por.por_residual_update(**sample_batch(dataset, args.batch_size))
elif args.type == 'por_q': # learn V by asymmetric_l2_loss; learn g by q-learning (need to pretrain a behavior goal policy)
por.por_qlearning_update(**sample_batch(dataset, args.batch_size))
if (step+1) % args.eval_period == 0:
average_returns = eval_por(step)
eval_log.write(f'{step + 1}\t{average_returns}\n')
eval_log.flush()
eval_log.close()
os.makedirs(f"{args.model_dir}/{args.env_name}", exist_ok=True)
por.save(f"{args.model_dir}/{args.env_name}/{algo_name}")
if __name__ == '__main__':
from argparse import ArgumentParser
parser = ArgumentParser()
parser.add_argument('--env_name', type=str, default="antmaze-medium-diverse-v2")
parser.add_argument('--log_dir', type=str, default="./results/")
parser.add_argument('--model_dir', type=str, default="./models/")
parser.add_argument('--seed', type=int, default=0)
parser.add_argument('--discount', type=float, default=0.99)
parser.add_argument('--hidden_dim', type=int, default=256)
parser.add_argument('--n_hidden', type=int, default=2)
parser.add_argument('--pretrain_steps', type=int, default=10**6)
parser.add_argument('--train_steps', type=int, default=10**6)
parser.add_argument('--batch_size', type=int, default=256)
parser.add_argument('--tau', type=float, default=0.9)
parser.add_argument('--value_lr', type=float, default=1e-4)
parser.add_argument('--policy_lr', type=float, default=1e-4)
parser.add_argument('--alpha', type=float, default=10.0)
parser.add_argument('--eval_period', type=int, default=10000)
parser.add_argument('--n_eval_episodes', type=int, default=50)
parser.add_argument('--max_episode_steps', type=int, default=1000)
parser.add_argument("--normalize", action='store_true')
parser.add_argument("--layer_norm", action='store_true')
parser.add_argument("--type", type=str, choices=['por_r', 'por_q'], default='por_r')
parser.add_argument("--pretrain", action='store_true')
# parser.add_argument("--ablation_type", type=str, required=True, choices=['None', 'generlization'])
now = time.strftime("%Y%m%d_%H%M%S", time.localtime())
args = parser.parse_args()
main(args)