-
Notifications
You must be signed in to change notification settings - Fork 70
/
Copy pathUAP_Generation.py
115 lines (90 loc) · 5.84 KB
/
UAP_Generation.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
#!/usr/bin/env python
# -*- coding: utf-8 -*-
# **************************************
# @Time : 2018/10/21 21:00
# @Author : Xiang Ling
# @Lab : nesa.zju.edu.cn
# @File : UAP_Generation.py
# **************************************
import argparse
import os
import random
import sys
import numpy as np
import torch
sys.path.append('%s/../' % os.path.dirname(os.path.realpath(__file__)))
from Attacks.AttackMethods.AttackUtils import predict
from Attacks.AttackMethods.UAP import UniversalAttack
from Attacks.Generation import Generation
from RawModels.Utils.dataset import get_cifar10_train_validate_loader, get_mnist_train_validate_loader
class UAPGeneration(Generation):
def __init__(self, dataset, attack_name, targeted, raw_model_location, clean_data_location, adv_examples_dir, device, max_iter_uni, frate,
epsilon, overshoot, max_iter_df):
super(UAPGeneration, self).__init__(dataset, attack_name, targeted, raw_model_location, clean_data_location, adv_examples_dir, device)
self.max_iter_uni = max_iter_uni
self.fooling_rate = frate
self.epsilon = epsilon
self.overshoot = overshoot
self.max_iter_df = max_iter_df
def generate(self):
attacker = UniversalAttack(model=self.raw_model, fooling_rate=self.fooling_rate, max_iter_universal=self.max_iter_uni,
epsilon=self.epsilon, overshoot=self.overshoot, max_iter_deepfool=self.max_iter_df)
assert self.dataset.upper() == 'MNIST' or self.dataset.upper() == 'CIFAR10', "dataset should be MNIST or CIFAR10!"
if self.dataset.upper() == 'MNIST':
samples_loader, valid_loader = get_mnist_train_validate_loader(dir_name='../RawModels/MNIST/', batch_size=1, valid_size=0.9,
shuffle=True)
else: # 'CIFAR10':
samples_loader, valid_loader = get_cifar10_train_validate_loader(dir_name='../RawModels/CIFAR10/', batch_size=1, valid_size=0.9,
augment=False, shuffle=True)
universal_perturbation = attacker.universal_perturbation(dataset=samples_loader, validation=valid_loader, device=self.device)
universal_perturbation = universal_perturbation.cpu().numpy()
np.save('{}{}_{}_universal_perturbation'.format(self.adv_examples_dir, self.attack_name, self.dataset), universal_perturbation)
adv_samples = attacker.perturbation(xs=self.nature_samples, uni_pert=universal_perturbation, device=self.device)
adv_labels = predict(model=self.raw_model, samples=adv_samples, device=self.device)
adv_labels = torch.max(adv_labels, 1)[1]
adv_labels = adv_labels.cpu().numpy()
np.save('{}{}_AdvExamples.npy'.format(self.adv_examples_dir, self.attack_name), adv_samples)
np.save('{}{}_AdvLabels.npy'.format(self.adv_examples_dir, self.attack_name), adv_labels)
np.save('{}{}_TrueLabels.npy'.format(self.adv_examples_dir, self.attack_name), self.labels_samples)
mis = 0
for i in range(len(adv_samples)):
if self.labels_samples[i].argmax(axis=0) != adv_labels[i]:
mis = mis + 1
print('\nFor **{}** on **{}**: misclassification ratio is {}/{}={:.1f}%\n'.format(self.attack_name, self.dataset, mis, len(adv_samples),
mis / len(adv_labels) * 100))
def main(args):
# Device configuration
os.environ['CUDA_VISIBLE_DEVICES'] = args.gpu_index
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
# Set the random seed manually for reproducibility.
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
torch.manual_seed(args.seed)
if torch.cuda.is_available():
torch.cuda.manual_seed(args.seed)
np.random.seed(args.seed)
random.seed(args.seed)
name = 'UAP'
targeted = False
df = UAPGeneration(dataset=args.dataset, attack_name=name, targeted=targeted, raw_model_location=args.modelDir,
clean_data_location=args.cleanDir, adv_examples_dir=args.adv_saver, device=device, max_iter_uni=args.max_iter_universal,
frate=args.fool_rate, epsilon=args.epsilon, overshoot=args.overshoot, max_iter_df=args.max_iter_deepfool)
df.generate()
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='The UAP Attack Generation')
# common arguments
parser.add_argument('--dataset', type=str, default='CIFAR10', help='the dataset should be MNIST or CIFAR10')
parser.add_argument('--modelDir', type=str, default='../RawModels/', help='the directory for the raw model')
parser.add_argument('--cleanDir', type=str, default='../CleanDatasets/', help='the directory for the clean dataset that will be attacked')
parser.add_argument('--adv_saver', type=str, default='../AdversarialExampleDatasets/',
help='the directory used to save the generated adversarial examples')
parser.add_argument('--seed', type=int, default=100, help='the default random seed for numpy and torch')
parser.add_argument('--gpu_index', type=str, default='0', help="gpu index to use")
# arguments for the particular attack
parser.add_argument('--fool_rate', type=float, default=1.0, help="the fooling rate")
parser.add_argument('--epsilon', type=float, default=0.1, help='controls the magnitude of the perturbation')
parser.add_argument('--max_iter_universal', type=int, default=20, help="the maximum iterations for UAP")
parser.add_argument('--overshoot', type=float, default=0.02, help='the overshoot parameter for DeepFool')
parser.add_argument('--max_iter_deepfool', type=int, default=10, help='the maximum iterations for DeepFool')
arguments = parser.parse_args()
main(arguments)