-
Notifications
You must be signed in to change notification settings - Fork 44
/
main64.cpp
299 lines (242 loc) · 9.12 KB
/
main64.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
#include "platform.h"
#include <stdio.h>
#include <stdarg.h>
#include <stdlib.h>
#include <stdint.h>
#include <string.h>
#include <assert.h>
#include "rans64.h"
// This is just the sample program. All the meat is in rans_byte.h.
static void panic(const char *fmt, ...)
{
va_list arg;
va_start(arg, fmt);
fputs("Error: ", stderr);
vfprintf(stderr, fmt, arg);
va_end(arg);
fputs("\n", stderr);
exit(1);
}
static uint8_t* read_file(char const* filename, size_t* out_size)
{
FILE* f = fopen(filename, "rb");
if (!f)
panic("file not found: %s\n", filename);
fseek(f, 0, SEEK_END);
size_t size = ftell(f);
fseek(f, 0, SEEK_SET);
uint8_t* buf = new uint8_t[size];
if (fread(buf, size, 1, f) != 1)
panic("read failed\n");
fclose(f);
if (out_size)
*out_size = size;
return buf;
}
// ---- Stats
struct SymbolStats
{
uint32_t freqs[256];
uint32_t cum_freqs[257];
void count_freqs(uint8_t const* in, size_t nbytes);
void calc_cum_freqs();
void normalize_freqs(uint32_t target_total);
};
void SymbolStats::count_freqs(uint8_t const* in, size_t nbytes)
{
for (int i=0; i < 256; i++)
freqs[i] = 0;
for (size_t i=0; i < nbytes; i++)
freqs[in[i]]++;
}
void SymbolStats::calc_cum_freqs()
{
cum_freqs[0] = 0;
for (int i=0; i < 256; i++)
cum_freqs[i+1] = cum_freqs[i] + freqs[i];
}
void SymbolStats::normalize_freqs(uint32_t target_total)
{
assert(target_total >= 256);
calc_cum_freqs();
uint32_t cur_total = cum_freqs[256];
// resample distribution based on cumulative freqs
for (int i = 1; i <= 256; i++)
cum_freqs[i] = ((uint64_t)target_total * cum_freqs[i])/cur_total;
// if we nuked any non-0 frequency symbol to 0, we need to steal
// the range to make the frequency nonzero from elsewhere.
//
// this is not at all optimal, i'm just doing the first thing that comes to mind.
for (int i=0; i < 256; i++) {
if (freqs[i] && cum_freqs[i+1] == cum_freqs[i]) {
// symbol i was set to zero freq
// find best symbol to steal frequency from (try to steal from low-freq ones)
uint32_t best_freq = ~0u;
int best_steal = -1;
for (int j=0; j < 256; j++) {
uint32_t freq = cum_freqs[j+1] - cum_freqs[j];
if (freq > 1 && freq < best_freq) {
best_freq = freq;
best_steal = j;
}
}
assert(best_steal != -1);
// and steal from it!
if (best_steal < i) {
for (int j = best_steal + 1; j <= i; j++)
cum_freqs[j]--;
} else {
assert(best_steal > i);
for (int j = i + 1; j <= best_steal; j++)
cum_freqs[j]++;
}
}
}
// calculate updated freqs and make sure we didn't screw anything up
assert(cum_freqs[0] == 0 && cum_freqs[256] == target_total);
for (int i=0; i < 256; i++) {
if (freqs[i] == 0)
assert(cum_freqs[i+1] == cum_freqs[i]);
else
assert(cum_freqs[i+1] > cum_freqs[i]);
// calc updated freq
freqs[i] = cum_freqs[i+1] - cum_freqs[i];
}
}
int main()
{
size_t in_size;
uint8_t* in_bytes = read_file("book1", &in_size);
static const uint32_t prob_bits = 14;
static const uint32_t prob_scale = 1 << prob_bits;
SymbolStats stats;
stats.count_freqs(in_bytes, in_size);
stats.normalize_freqs(prob_scale);
// cumlative->symbol table
// this is super brute force
uint8_t cum2sym[prob_scale];
for (int s=0; s < 256; s++)
for (uint32_t i=stats.cum_freqs[s]; i < stats.cum_freqs[s+1]; i++)
cum2sym[i] = s;
static size_t out_max_size = 32<<20; // 32MB
static size_t out_max_elems = out_max_size / sizeof(uint32_t);
uint32_t* out_buf = new uint32_t[out_max_elems];
uint32_t* out_end = out_buf + out_max_elems;
uint8_t* dec_bytes = new uint8_t[in_size];
// try rANS encode
uint32_t *rans_begin;
Rans64EncSymbol esyms[256];
Rans64DecSymbol dsyms[256];
for (int i=0; i < 256; i++) {
Rans64EncSymbolInit(&esyms[i], stats.cum_freqs[i], stats.freqs[i], prob_bits);
Rans64DecSymbolInit(&dsyms[i], stats.cum_freqs[i], stats.freqs[i]);
}
// ---- regular rANS encode/decode. Typical usage.
memset(dec_bytes, 0xcc, in_size);
printf("rANS encode:\n");
for (int run=0; run < 5; run++) {
double start_time = timer();
uint64_t enc_start_time = __rdtsc();
Rans64State rans;
Rans64EncInit(&rans);
uint32_t* ptr = out_end; // *end* of output buffer
for (size_t i=in_size; i > 0; i--) { // NB: working in reverse!
int s = in_bytes[i-1];
Rans64EncPutSymbol(&rans, &ptr, &esyms[s], prob_bits);
}
Rans64EncFlush(&rans, &ptr);
rans_begin = ptr;
uint64_t enc_clocks = __rdtsc() - enc_start_time;
double enc_time = timer() - start_time;
printf("%"PRIu64" clocks, %.1f clocks/symbol (%5.1fMiB/s)\n", enc_clocks, 1.0 * enc_clocks / in_size, 1.0 * in_size / (enc_time * 1048576.0));
}
printf("rANS: %d bytes\n", (int) ((out_end - rans_begin) * sizeof(uint32_t)));
// try rANS decode
for (int run=0; run < 5; run++) {
double start_time = timer();
uint64_t dec_start_time = __rdtsc();
Rans64State rans;
uint32_t* ptr = rans_begin;
Rans64DecInit(&rans, &ptr);
for (size_t i=0; i < in_size; i++) {
uint32_t s = cum2sym[Rans64DecGet(&rans, prob_bits)];
dec_bytes[i] = (uint8_t) s;
Rans64DecAdvanceSymbol(&rans, &ptr, &dsyms[s], prob_bits);
}
uint64_t dec_clocks = __rdtsc() - dec_start_time;
double dec_time = timer() - start_time;
printf("%"PRIu64" clocks, %.1f clocks/symbol (%5.1fMiB/s)\n", dec_clocks, 1.0 * dec_clocks / in_size, 1.0 * in_size / (dec_time * 1048576.0));
}
// check decode results
if (memcmp(in_bytes, dec_bytes, in_size) == 0)
printf("decode ok!\n");
else
printf("ERROR: bad decoder!\n");
// ---- interleaved rANS encode/decode. This is the kind of thing you might do to optimize critical paths.
memset(dec_bytes, 0xcc, in_size);
// try interleaved rANS encode
printf("\ninterleaved rANS encode:\n");
for (int run=0; run < 5; run++) {
double start_time = timer();
uint64_t enc_start_time = __rdtsc();
Rans64State rans0, rans1;
Rans64EncInit(&rans0);
Rans64EncInit(&rans1);
uint32_t* ptr = out_end;
// odd number of bytes?
if (in_size & 1) {
int s = in_bytes[in_size - 1];
Rans64EncPutSymbol(&rans0, &ptr, &esyms[s], prob_bits);
}
for (size_t i=(in_size & ~1); i > 0; i -= 2) { // NB: working in reverse!
int s1 = in_bytes[i-1];
int s0 = in_bytes[i-2];
Rans64EncPutSymbol(&rans1, &ptr, &esyms[s1], prob_bits);
Rans64EncPutSymbol(&rans0, &ptr, &esyms[s0], prob_bits);
}
Rans64EncFlush(&rans1, &ptr);
Rans64EncFlush(&rans0, &ptr);
rans_begin = ptr;
uint64_t enc_clocks = __rdtsc() - enc_start_time;
double enc_time = timer() - start_time;
printf("%"PRIu64" clocks, %.1f clocks/symbol (%5.1fMiB/s)\n", enc_clocks, 1.0 * enc_clocks / in_size, 1.0 * in_size / (enc_time * 1048576.0));
}
printf("interleaved rANS: %d bytes\n", (int) ((out_end - rans_begin) * sizeof(uint32_t)));
// try interleaved rANS decode
for (int run=0; run < 5; run++) {
double start_time = timer();
uint64_t dec_start_time = __rdtsc();
Rans64State rans0, rans1;
uint32_t* ptr = rans_begin;
Rans64DecInit(&rans0, &ptr);
Rans64DecInit(&rans1, &ptr);
for (size_t i=0; i < (in_size & ~1); i += 2) {
uint32_t s0 = cum2sym[Rans64DecGet(&rans0, prob_bits)];
uint32_t s1 = cum2sym[Rans64DecGet(&rans1, prob_bits)];
dec_bytes[i+0] = (uint8_t) s0;
dec_bytes[i+1] = (uint8_t) s1;
Rans64DecAdvanceSymbolStep(&rans0, &dsyms[s0], prob_bits);
Rans64DecAdvanceSymbolStep(&rans1, &dsyms[s1], prob_bits);
Rans64DecRenorm(&rans0, &ptr);
Rans64DecRenorm(&rans1, &ptr);
}
// last byte, if number of bytes was odd
if (in_size & 1) {
uint32_t s0 = cum2sym[Rans64DecGet(&rans0, prob_bits)];
dec_bytes[in_size - 1] = (uint8_t) s0;
Rans64DecAdvanceSymbol(&rans0, &ptr, &dsyms[s0], prob_bits);
}
uint64_t dec_clocks = __rdtsc() - dec_start_time;
double dec_time = timer() - start_time;
printf("%"PRIu64" clocks, %.1f clocks/symbol (%5.1fMB/s)\n", dec_clocks, 1.0 * dec_clocks / in_size, 1.0 * in_size / (dec_time * 1048576.0));
}
// check decode results
if (memcmp(in_bytes, dec_bytes, in_size) == 0)
printf("decode ok!\n");
else
printf("ERROR: bad decoder!\n");
delete[] out_buf;
delete[] dec_bytes;
delete[] in_bytes;
return 0;
}