-
Notifications
You must be signed in to change notification settings - Fork 24
/
Copy pathcompletion2MTL.m
executable file
·78 lines (68 loc) · 2.05 KB
/
completion2MTL.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
% completion2MTL - this is a simplified version of completion2MTL
% written by Bernardino Romera-Paredes
%
% Example
% addpath tensor_toolbox % path to SANDIA tensor toolbox
% sz=[50 50 20]; rr=[7 8 9];
% X0=randtensor3(sz, rr);
% [ind_tr, ind_te]=randsplit(prod(sz), 0.1);
% Knowns=zeros(sz);
% Knowns(ind_tr)=1;
% Xobs=zeros(sz);
% Xobs(ind_tr)=X0(ind_tr);
% data=completion2MTL(struct('Tensor', tensor(Xobs), 'KnownInputs', tensor(Knowns)),[]);
%
% See also
% tensor, randsplit
%
% Copyright(c) 2010-2014 Ryota Tomioka
% This software is distributed under the MIT license. See license.txt
function [dataConf DataParameters] = completion2MTL(dataConf, DataParameters)
%COMPLETION2MTL Summary of this function goes here
% Detailed explanation goes here
noisyWTensor=dataConf.Tensor;
KnownInputs=dataConf.KnownInputs;
dimensions=size(noisyWTensor);
nAttrs=dimensions(1);
nTasks=prod(dimensions(2:end));
noisyW=double(reshape(noisyWTensor, [nAttrs, nTasks]));
knowns=double(reshape(KnownInputs, [nAttrs, nTasks]));
trainYCell=cell(1,nTasks);
trainXCell=cell(1,nTasks);
testYCell=cell(1,nTasks);
testXCell=cell(1,nTasks);
for i=1:nTasks
knownT=knowns(:,i);
present=find(knownT);
nInstances=length(present);
X=zeros(nAttrs, nInstances);
Y=zeros(nInstances, 1);
for j=1:length(present)
X(present(j), j)=1;
Y(j)=noisyW(present(j),i);
end
present=find(knownT==0);
nInstances=length(present);
XTest=zeros(nAttrs, nInstances);
YTest=zeros(nInstances, 1);
% for j=1:length(present)
% XTest(present(j), j)=1;
% YTest(j)=W(present(j),i);
% end
% XTest=eye(nAttrs);
% YTest=W(:,i);
trainYCell{i}=Y;
trainXCell{i}=X;
testYCell{i}=YTest;
testXCell{i}=XTest;
end
dataConf.trainXCell=trainXCell;
dataConf.trainYCell=trainYCell;
dataConf.testXCell=testXCell;
dataConf.testYCell=testYCell;
% dataConf.validation_testXCell=validationXCell;
% dataConf.validation_testYCell=validationYCell;
%dataConf.W=W;
%dataConf.WTensor=WTensor;
dataConf.indicators=dimensions;
end