-
Notifications
You must be signed in to change notification settings - Fork 24
/
Copy pathexp_completion_l1.m
144 lines (114 loc) · 3.79 KB
/
exp_completion_l1.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
% exp_completion_l1 - performs experiment on sparse+low decomposition
%
% See also
% exp_completion, tensorl1_adm, matrixl1_adm, plot_completion_l1
%
% Reference
% "Estimation of low-rank tensors via convex optimization"
% Ryota Tomioka, Kohei Hayashi, and Hisashi Kashima
% arXiv:1010.0789
% http://arxiv.org/abs/1010.0789
%
% "Statistical Performance of Convex Tensor Decomposition"
% Ryota Tomioka, Taiji Suzuki, Kohei Hayashi, Hisashi Kashima
% NIPS 2011
% http://books.nips.cc/papers/files/nips24/NIPS2011_0596.pdf
%
% Convex Tensor Decomposition via Structured Schatten Norm Regularization
% Ryota Tomioka, Taiji Suzuki
% NIPS 2013
% http://papers.nips.cc/paper/4985-convex-tensor-decomposition-via-structured-schatten-norm-regularization.pdf
%
% Copyright(c) 2010-2014 Ryota Tomioka
% This software is distributed under the MIT license. See license.txt
nrep=10;
sz=[50,50,50];
dims=[7,7,7];
trfrac=0.05:0.05:0.95;
noisefr = 0.1; % 10% contaminated by noise
lambda=[exp(linspace(log(0.001),log(100),20))',...
exp(linspace(log(1),log(40),20))'*ones(1,2)];
methods = {'constraint','matrix', 'tensor'};
% methods = {'constraint'}
for ll=1:nrep
X0=randtensor3(sz,dims);
nn=prod(size(X0));
for kk=1:length(trfrac)
ntr=round(nn*trfrac(kk));
ind=randperm(nn); ind=ind(1:ntr)';
ind_test=setdiff(1:prod(sz), ind);
[I,J,K]=ind2sub(sz, ind);
ind2=randperm(length(ind));
ind2=ind2(1:round(length(ind2)*noisefr));
yy=X0(ind);
yy(ind2)=yy(ind2)+randn(length(ind2),1);
err0=yy-X0(ind);
for ii=1:length(lambda)
for jj=1:length(methods)
switch(methods{jj})
case 'constraint'
tic;
[X,Z,Y,fval,res]=tensorconst_adm(zeros(sz),{I,J,K},yy,lambda(ii,jj));
time(ll,ii,jj,kk)=toc;
case 'matrix'
J2=sub2ind(sz(2:3), J, K);
tic;
[X,Z,A,fval,res]=matrixl1_adm(zeros(sz(1), sz(2)*sz(3)),{I,J2},yy,lambda(ii,jj),'verbose',0);
time(ll,ii,jj,kk)=toc;
X=reshape(X, sz);
case 'tensor'
tic;
[X,Z,A,beta,fval,res]=tensorl1_adm(zeros(sz),{I,J,K},yy,lambda(ii,jj),'verbose',0);
time(ll,ii,jj,kk)=toc;
end
est(ll,ii,jj,kk)=norm(X0(ind)-X(ind))/norm(X0(ind));
gen(ll,ii,jj,kk)=norm(X0(ind_test)-X(ind_test))/norm(X0(ind_test));
memo(ll,ii,jj,kk)=struct('err0',err0,'err',yy-X(ind) ,'fval',fval,'res',res);
end
fprintf('tr=%g lmd=%s est=%s gen=%s\n',trfrac(kk),printvec(lambda(ii,:)), ...
printvec(est(ll,ii,:,kk)), printvec(gen(ll,ii,:,kk)));
end
end
% $$$ lambda_mean=zeros(length(trfrac),1);
% $$$ for kk=1:length(lambda_mean)
% $$$ weight=exp(-100*gen(ll,:,jj,kk)); weight=weight/sum(weight);
% $$$ lambda_mean(ii)=exp(log(lambda)*weight);
% $$$ end
end
if 0
err=yy-X0(ind); % true error vector (sparse)
[mm,ix]=min(err1);
X=memo(ix).X;
Z{1}=flatten(X,1);
Z{2}=flatten(X,2);
Z{3}=flatten(X,3);
figure
subplot(2,3,1); plot([svd(flatten(X0,1)), svd(Z{1})],'-x','linewidth',2)
grid on;
legend('True', 'Estimated')
[U0,S0,V0]=pca(flatten(X0,1),7,10);
[U,S,V]=pca(Z{1},7,10);
subplot(2,3,4); imagesc(U0'*U)
subplot(2,3,2); plot([svd(flatten(X0,2)), svd(Z{2})],'-x','linewidth',2)
grid on;
legend('True', 'Estimated')
[U0,S0,V0]=pca(flatten(X0,2),8,10);
[U,S,V]=pca(Z{2},8,10);
subplot(2,3,5); imagesc(U0'*U)
subplot(2,3,3); plot([svd(flatten(X0,3)), svd(Z{3})],'-x','linewidth',2)
grid on;
legend('True', 'Estimated')
[U0,S0,V0]=pca(flatten(X0,3),9,10);
[U,S,V]=pca(Z{3},9,10);
subplot(2,3,6); imagesc(U0'*U);
% Compute ROC curve
[ss,ix]=sort(-abs(yy-X(ind)));
for ii=1:length(ix)
tp(ii)=sum(abs(err(ix(1:ii)))>0)/length(ind2);
fp(ii)=sum(abs(err(ix(1:ii)))==0)/(ntr-length(ind2));
end
figure, plot(fp, tp, '-x', 'linewidth',2);
grid on;
xlabel('FP rate');
ylabel('TP rate');
end