-
Notifications
You must be signed in to change notification settings - Fork 25
/
Copy pathtensorl1_adm.m
203 lines (159 loc) · 4.16 KB
/
tensorl1_adm.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
% tensorl1_adm - sparse + low-rank decomposition via overlapped approach
%
% Syntax
% [X,Z,A,beta,fval,res] = tensorl1_adm(X, I, yy, lambda, varargin)
%
% See also
% tensorconst_adm
%
% Reference
% "Estimation of low-rank tensors via convex optimization"
% Ryota Tomioka, Kohei Hayashi, and Hisashi Kashima
% arXiv:1010.0789
% http://arxiv.org/abs/1010.0789
%
% "Statistical Performance of Convex Tensor Decomposition"
% Ryota Tomioka, Taiji Suzuki, Kohei Hayashi, Hisashi Kashima
% NIPS 2011
% http://books.nips.cc/papers/files/nips24/NIPS2011_0596.pdf
%
% Convex Tensor Decomposition via Structured Schatten Norm Regularization
% Ryota Tomioka, Taiji Suzuki
% NIPS 2013
% http://papers.nips.cc/paper/4985-convex-tensor-decomposition-via-structured-schatten-norm-regularization.pdf
%
% Copyright(c) 2010-2014 Ryota Tomioka
% This software is distributed under the MIT license. See license.txt
function [X,Z,A,beta,fval,res] = tensorl1_adm(X, I, yy, lambda, varargin)
opt=propertylist2struct(varargin{:});
opt=set_defaults(opt, 'eta', [], 'eta1', [], 'gamma',[],'tol', 1e-3, 'verbose', 0,'yfact',10,'maxiter',2000);
sz=size(X);
nd=ndims(X);
m =length(I{1});
if ~isempty(opt.gamma)
gamma=opt.gamma;
else
gamma=ones(1,nd);
end
if ~isempty(opt.eta)
eta=opt.eta;
else
eta=1/(opt.yfact*std(yy));
end
if ~isempty(opt.eta1)
eta1=opt.eta1;
else
eta1=1/(opt.yfact*std(yy));
% eta1=1/(opt.yfact*std(yy)*lambda^(1/4));
end
if nd~=length(I)
error('Number of dimensions mismatch.');
end
if m~=length(yy)
error('Number of samples mismatch.');
end
Z=cell(1,nd);
A=cell(1,nd);
S=cell(1,nd);
for jj=1:nd
szj = [sz(jj), prod(sz)/sz(jj)];
A{jj} = zeros(szj);
Z{jj} = zeros(szj);
end
Y=zeros(sz);
ind=sub2ind(sz, I{:});
Y(ind)=yy;
delta = zeros(m,1);
beta = zeros(m,1);
kk=1;
nsv=10*ones(1,nd);
dval=-inf;
while 1
Xorig = X;
% X update
X1 = zeros(size(X));
for jj=1:nd
X1 = X1 + flatten_adj(eta*Z{jj}-A{jj},sz,jj);
end
X1(ind) = X1(ind) + eta1*(yy-delta-beta/eta1);
X=X1./(eta1*(Y~=0)+nd*eta);
% delta update
[delta,ss] = l1_softth(yy-X(ind)-beta/eta1, 1/lambda/eta1);
% Z update
for jj=1:nd
[Z{jj},S{jj},nsv(jj)] = softth(flatten(X,jj)+A{jj}/eta,gamma(jj)/eta,nsv(jj));
% Check derivative
% fprintf('max[%d]=%g\n',jj,max(svd(eta*(Z{jj}-flatten(X,jj)-A{jj}/eta))));
end
% Update A
for jj=1:nd
V=flatten(X,jj)-Z{jj};
A{jj}=A{jj}+eta*V;
viol(jj)=norm(V(:));
end
% Update beta
beta = beta + eta1*(X(ind)+delta-yy);
% Compute the objective
G=zeros(size(X));
fval(kk)=0;
for jj=1:nd
fval(kk)=fval(kk)+gamma(jj)*sum(svd(flatten(X,jj)));
G = G + flatten_adj(A{jj},sz,jj);
end
if lambda>0
fval(kk)=fval(kk)+sum(abs(yy-X(ind)))/lambda;
G(ind)=G(ind)+(X(ind)-yy)/lambda;
else
G(ind)=0;
end
viol(nd+1) =norm(X(ind)+delta-yy);
dval = max(dval, -evalDual(A, beta, yy, lambda, gamma, sz, ind));
res(kk)=1-dval/fval(kk);
% res(kk)=max([norm(G(:))/eta,viol]);% /norm(X(:));
% res(kk)=max(viol);
if opt.verbose
fprintf('k=%d fval=%g res=%g viol=%s eta=%s\n',...
kk, fval(kk), res(kk), printvec(viol),printvec([eta eta1]));
end
if kk>1 && res(kk)<opt.tol % max(viol)<opt.tol && gval(kk)<opt.tol
break;
end
if kk>opt.maxiter
break;
end
kk=kk+1;
end
fprintf('k=%d fval=%g res=%g viol=%s eta=%g\n',...
kk, fval(kk), res(kk), printvec(viol),eta);
function dval=evalDual(A, beta, yy, lambda, gamma, sz, ind)
nd=length(A);
Am=zeros(sz);
for jj=1:nd
Am=Am+flatten_adj(A{jj},sz,jj);
end
Am(ind)=Am(ind)+beta;
Am=Am/nd;
fact=1;
for jj=1:nd
A{jj}=A{jj}-flatten(Am,jj);
ss=pcaspec(A{jj},1,10);
fact=min(fact,gamma(jj)/ss);
end
% fprintf('fact=%g\n',fact);
fact = min(fact, 1/lambda/max(abs(beta)));
As=zeros(sz);
for jj=1:nd
A{jj}=A{jj}*fact;
As=As+flatten_adj(A{jj},sz,jj);
% fprintf('fact[%d]=%g ',jj, max(1,ss/gamma(jj)));
end
beta=beta*fact;
As(ind)=As(ind)+beta;
% fprintf('norm(Am)=%g fact=%g norm(As)=%g\n', norm(Am(:)), fact, norm(As(:)));
% $$$ ind_test=setdiff(1:prod(sz), ind);
% $$$ V=zeros(sz);
% $$$ for jj=1:nd
% $$$ V=V+flatten_adj(A{jj},sz,jj);
% $$$ end
% $$$ fprintf('violation=%g\n',norm(V(ind_test)));
dval = yy'*beta;