Skip to content

Latest commit

 

History

History
91 lines (67 loc) · 2.49 KB

README.md

File metadata and controls

91 lines (67 loc) · 2.49 KB

testZED

Introduction

  • Using a ZED 2i to convert .svo file to 3d skeletons.

  • ZED SDK should be installed.

    • ZED SDK 4.0.8 is used in this repository.
    • Blog post for my notes.
  • Screenshots:

image image;

Usage

Record .svo

python3 camera_control_record.py

Post Processing

Play 3-d skeletons from .svo:

python3 body_tracking_real_time_svo.py ./test.svo

Export 3-d skeletons to .mat from local recorded .svo:

python3 svo_skeletons.py -i <input_svo_path> -o <output_mat_path> -b <body_format>
❯ python3 svo_skeletons.py -h

usage: svo_skeletons.py [-h] [-i INPUT_SVO_PATH] [-o OUTPUT_MAT_PATH] [-b BODY_FORMAT]

Convert svo to mat.

optional arguments:
  -h, --help            show this help message and exit
  -i INPUT_SVO_PATH, --input_svo_path INPUT_SVO_PATH
                        Input svo path, default:./test.svo
  -o OUTPUT_MAT_PATH, --output_mat_path OUTPUT_MAT_PATH
                        Output: mat path, default:./data/temp.mat
  -b BODY_FORMAT, --body_format BODY_FORMAT
                        Capatured body format, available selections: BODY_18, BODY_34, BODY_38; default:BODY_18

Export .svo to .mp4 videos:

python3 svo_export.py ./test.svo ./videos/left_right.mp4 0
python3 svo_export.py ./test.svo ./videos/left_rightdepth.mp4 1

Acknowledgement:

Thanks to Li-baster for acting as a model for the recording of the video.