-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
executable file
·170 lines (142 loc) · 4.45 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
#!/usr/bin/env python3
import json
import time
from argparse import ONE_OR_MORE, ZERO_OR_MORE, Action, ArgumentParser
from pathlib import Path
import cmo_digits.initializers as initializers
from cmo_digits.activation.leaky_relu import LReLU
from cmo_digits.activation.relu import ReLU
from cmo_digits.activation.sigmoid import Sigmoid
from cmo_digits.activation.tanh import Tanh
from cmo_digits.network import Network
from cmo_digits.utils import load_data
DIGIT_HEIGHT = 28
DIGIT_WIDTH = 28
OUTPUT_NEURONS = 10
ACTIVATION_FNS = {"sigmoid": Sigmoid, "relu": ReLU, "lrelu": LReLU, "tanh": Tanh}
DATASET = "./datasets/mnist.npz"
def main():
parser = get_parser()
args = parser.parse_args()
sizes = [DIGIT_HEIGHT * DIGIT_WIDTH, *args.layers, OUTPUT_NEURONS]
activation_fn = ACTIVATION_FNS.get(args.activation.lower(), Sigmoid)(
**(args.act_args or {})
)
if isinstance(activation_fn, ReLU) or isinstance(activation_fn, LReLU):
weights_init_fn = initializers.he_kaiming
else:
weights_init_fn = initializers.gaussian
net = Network(sizes, activation_fn, weights_init_fn)
training_data, testing_data = load_data(DATASET)
print("Training Network With:")
print(f"\tlayers = {sizes}")
print(f"\tn_epochs = {args.epochs}")
print(f"\tmini-batch size = {args.batch_size}")
print(f"\tlearning rate = {args.eta}")
print(f"\tactivation function = {type(activation_fn).__name__}")
if args.act_args:
print(f"\tactivation fn args = {args.act_args}")
start_time = time.time()
net.stochastic_gd(
training_data,
args.epochs,
args.batch_size,
args.eta,
testing_data,
)
took = int(time.time() - start_time)
print(f"took: {took} seconds")
if args.save_model:
if args.save_model.exists():
print(f"{args.save_model} already exists")
else:
net.save_to_pkl(args.save_model)
if args.save_stats:
if args.save_stats.exists():
print(f"{args.save_stats} already exists")
else:
stats = {
"epochs": args.epochs,
"mini_batch_size": args.batch_size,
"eta": args.eta,
"layers": sizes,
"activation_fn": type(activation_fn).__name__,
"time_taken": took,
"accuracy": net.accuracy,
"activation_fn_args": args.act_args,
}
with open(args.save_stats, "w") as f:
json.dump(stats, f)
class ParseKwargs(Action):
def __call__(self, parser, namespace, values, option_string=None):
setattr(namespace, self.dest, dict())
for value in values:
key, value = value.split("=")
try:
value = float(value)
except ValueError:
pass
getattr(namespace, self.dest)[key] = value
def get_parser() -> ArgumentParser:
parser = ArgumentParser(
prog="cmo_digits training",
description="utitlity script for training the model with different parameters",
)
parser.add_argument(
"--epochs",
"-e",
type=int,
metavar="N_EPOCHS",
default=30,
help="number of epochs",
)
parser.add_argument(
"--batch-size",
"-b",
type=int,
metavar="BATCH_SIZE",
default=10,
help="mini-batch size",
)
parser.add_argument(
"--eta", "-r", type=float, metavar="RATE", default=3.0, help="learning rate"
)
parser.add_argument(
"--layers",
"-l",
nargs=ONE_OR_MORE,
type=int,
metavar="NEURONS",
default=[30],
help="neurons in respective hidden layers",
)
parser.add_argument(
"--activation",
"-a",
choices=ACTIVATION_FNS.keys(),
default="sigmoid",
help="activation function to use",
)
parser.add_argument(
"--save-model",
"-s",
type=Path,
metavar="FILEPATH",
help="save the model to FILEPATH",
)
parser.add_argument(
"--save-stats",
type=Path,
metavar="FILEPATH",
help="save the model statistics to a json file",
)
parser.add_argument(
"--act-args",
action=ParseKwargs,
nargs=ZERO_OR_MORE,
metavar="PARAM=VALUE",
help="pass arguments to the activation function",
)
return parser
if __name__ == "__main__":
main()