-
Notifications
You must be signed in to change notification settings - Fork 508
/
Copy pathCheck for Balanced Tree.cpp
79 lines (68 loc) · 1.48 KB
/
Check for Balanced Tree.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
/*
Check for Balanced Tree
=======================
Given a binary tree, find if it is height balanced or not.
A tree is height balanced if difference between heights of left and right subtrees is not more than one for all nodes of tree.
A height balanced tree
1
/ \
10 39
/
5
An unbalanced tree
1
/
10
/
5
Example 1:
Input:
1
/
2
\
3
Output: 0
Explanation: The max difference in height
of left subtree and right subtree is 2,
which is greater than 1. Hence unbalanced
Example 2:
Input:
10
/ \
20 30
/ \
40 60
Output: 1
Explanation: The max difference in height
of left subtree and right subtree is 1.
Hence balanced.
Your Task:
You don't need to take input. Just complete the function isBalanced() that takes root node as parameter and returns true, if the tree is balanced else returns false.
Constraints:
1 <= Number of nodes <= 105
0 <= Data of a node <= 106
Expected time complexity: O(N)
Expected auxiliary space: O(h) , where h = height of tree
*/
bool helper(Node *root, int &height)
{
if (!root)
{
height = 0;
return true;
}
int lh = 0, rh = 0;
auto left = helper(root->left, lh);
auto right = helper(root->right, rh);
height = 1 + max(lh, rh);
return abs(lh - rh) < 2 && left && right;
}
//Function to check whether a binary tree is balanced or not.
bool isBalanced(Node *root)
{
if (!root)
return true;
int height = 0;
return helper(root, height);
}